
AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

2

Question 1: Daily Schedule

Part A: conflictsWith 1 1/2 points

 +1/2 call OBJ1.overlapsWith(OBJ2)
 +1/2 access getTime of other and this
 +1/2 return correct value

Part B: clearConflicts 3 points

 +2 loop over apptList
 +1/2 reference apptList in loop body
 +1/2 access appointment in context of loop (apptList.get(i))
 +1 access all appointments (cannot skip entries after a removal)

+1 remove conflicts in context of loop
 +1/2 determine when conflict exists (must call conflictsWith)

 +1/2 remove all conflicting appointments (and no others)

Part C: addAppt 4 1/2 points

+1/2 test if emergency (may limit to when emergency AND conflict exists)
+1/2 clear conflicts if and only if emergency
 (must not reimplement clearConflicts code)
+1/2 add appt if emergency

 +2 non-emergency case
 +1/2 loop over apptList (must reference apptList in body)
 +1/2 access apptList element and check for appt conflicts in context of loop
 +1/2 exit loop with state (conflict / no conflict) correctly determined
 (includes loop bound)

+1/2 add appt if and only if no conflict

 +1 return true if any appointment added, false otherwise (must return both)

Usage: -1 if loop structure results in failure to handle empty apptList

AP® COMPUTER SCIENCE A/AB

2006 GENERAL USAGE

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once when the same usage is correct two or more times can be regarded as an oversight and not penalized. If
the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies*

local variable not declared when any
other variables are declared in some part

default constructor called without parens;
for example, new Fish;

use keyword as identifier

[r,c], (r)(c)or(r,c)instead of [r][c]

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side-effect, for
example a check for precondition

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent

missing () on method call or around
if/while conditions

missing ;s

missing “new” for constructor call once,
when others are present in some part

missing downcast from collection

missing int cast when needed

missing public on class or constructor
header

confused identifier (e.g., len for length
or left() for getLeft())

no local variables declared

new never used for constructor calls

void method or constructor returns a
value

modifying a constant (final)

use equals or compareTo method on
primitives, for example
int x; …x.equals(val)

[] – get confusion if access not tested in
rubric

assignment dyslexia, for example,
x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean values

"null" for null

extraneous code which causes side-effect,
for example, information written to output

use interface or class name instead of
variable identifier, for example
Simulation.step() instead of
sim.step()

aMethod(obj) instead of obj.aMethod()

use of object reference that is incorrect,
for example, use of f.move() inside
method of Fish class

use private data or method when not
accessible

destruction of data structure (e.g., by
using root reference to a TreeNode for
traversal of the tree)

use class name in place of super either in
constructor or in method call

*Note: Spelling and case discrepancies for identifiers fall under the
"nonpenalized" category as long as the correction can be unambiguously
inferred from context. For example, "Queu" instead of "Queue". Likewise,
if a student declares "Fish fish;", then uses Fish.move() instead of
fish.move(), the context allows for the reader to assume the object instead
of the class.

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1: Daily Schedule

PART A:

public boolean conflictsWith(Appointment other)
{
 return getTime().overlapsWith(other.getTime());
}

PART B:

public void clearConflicts(Appointment appt)
{
 int i = 0;
 while (i < apptList.size())
 {
 if (appt.conflictsWith((Appointment)(apptList.get(i))))
 {
 apptList.remove(i);
 }
 else
 {
 i++;
 }
 }
}

ALTERNATE SOLUTION

public void clearConflicts(Appointment appt)
{
 for (int i = apptList.size()-1; i >= 0; i--)
 {
 if (appt.conflictsWith((Appointment)apptList.get(i)))
 {
 apptList.remove(i);
 }
 }
}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1: Daily Schedule (continued)

PART C:

public boolean addAppt(Appointment appt, boolean emergency)
{
 if (emergency)
 {
 clearConflicts(appt);
 }
 else
 {
 for (int i = 0; i < apptList.size(); i++)
 {
 if (appt.conflictsWith((Appointment)apptList.get(i)))
 {

 return false;
 }
 }
 }
 return apptList.add(appt);

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1

Overview

This question focused on abstraction and data structure access. It involved storing and manipulating
appointments, each having a time interval associated with it. In part (a) students were required to complete the
conflictsWith method in the provided Appointment class, so that it compared the current appointment
with another appointment and determined whether they overlapped. This involved accessing the underlying time
interval for the two appointments and calling the appropriate method from the TimeInterval class to see if
an overlap occurred. A DailySchedule class was then provided that stored an ArrayList of
Appointment objects in a private data field. In part (b) students were required to complete the
clearConflicts method of this class, which involved traversing the ArrayList, identifying any
appointments that conflicted with the specified appointment (by calling the conflictsWith method from
part (a)), and removing all conflicting appointments. In part (c) students were required to complete the addAppt
method, which attempted to add a new appointment to the daily schedule. This involved traversing the
ArrayList to determine if any conflicts occurred, removing conflicts in the case of an emergency priority, and
adding the new appointment as long as no conflicts remained.

Sample: A1A
Score: 9

This solution earned full credit for all three parts. Its conflictsWith method correctly uses the methods
getTime and overlapsWith to return true if and only if the time interval of the current appointment
overlaps with the time interval of the other appointment. Its clearConflicts method examines the element
that immediately follows a removed one by decrementing the loop counter whenever an element is removed. Its
addAppt method tests for an emergency and in the emergency case clears the conflicts, adds the appointment,
and returns true. In the non-emergency case, it initializes the check counter to 0 and then increments it by one
every time a conflict is found. If after comparing the appointment with each appointment in the list, any conflicts
have been found (check is positive), false is returned; otherwise the appointment is added and true is
returned.

Sample: A1B
Score: 5

This solution earned a ½ point for its conflictsWith method, which gets the time of both the current
appointment and the appointment other. The method uses a compareTo method instead of
overlapsWith. The solution earned 2 points for its clearConflicts method, which is correct except
that it does not examine the element that immediately follows a removed one. The solution earned two ½ points
for its addAppt method. The method tests for an emergency and in the emergency case clears the conflicts,
adds the appointment, and returns true. In the non-emergency case it simply returns false, neither
checking for conflicts, nor attempting to add an appointment.

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1 (continued)

Sample: A1C
Score: 2

This solution earned a ½ point for its conflictsWith method, which applies overlapsWith to two
objects but does not access the time interval of the current appointment. The solution earned 1 point for its
clearConflicts method, which attempts to loop over the ArrayList instance field apptList, but
does not access any elements. The method applies conflictsWith to a new time interval instead of an
appointment from the list. It correctly uses the ArrayList method remove. The solution earned a ½ point
for its addAppt method, which tests for an emergency and does nothing in the non-emergency case. In the
emergency case, the statements are guarded by a test with an indeterminable value.

