
AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

3

Question 2: Taxable Items (Design)

Part A: purchasePrice 2 1/2 points

 +1 call getListPrice()

+1 calculate correct purchase price (no penalty if truncate/round to 2 decimal places)

 +1/2 return calculated price

Part B: Vehicle 6 1/2 points

 +1/2 class Vehicle extends TaxableItem
 +1/2 private double dealerCost
 +1/2 private double dealerMarkup (no penalty if also store tax in field)

 +2 1/2 constructor
 +1/2 Vehicle(double ?, double ?, double ?)
 int/float (OK if match fields)
 +1 call parent constructor
 +1/2 attempt using super
 +1/2 correct call: super(rate) (note: must be first line in method)
 +1 initialize dealer cost and markup fields
 +1/2 attempt (must use parameters on RHS or in mutator call)
 +1/2 correct

 +1 changeMarkup
 +1/2 public void changeMarkup(double ?)
 int/float (OK if matches field; no penalty if returns reasonable value)
 +1/2 assign parameter to markup field

 +1 1/2 getListPrice
 +1 public double getListPrice()
 +1/2 return sum of dealer cost and markup fields

Note: -1 usage if reimplement purchasePrice to do anything other than
 return super.purchasePrice();

AP® COMPUTER SCIENCE A/AB

2006 GENERAL USAGE

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once when the same usage is correct two or more times can be regarded as an oversight and not penalized. If
the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies*

local variable not declared when any
other variables are declared in some part

default constructor called without parens;
for example, new Fish;

use keyword as identifier

[r,c], (r)(c)or(r,c)instead of [r][c]

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side-effect, for
example a check for precondition

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent

missing () on method call or around
if/while conditions

missing ;s

missing “new” for constructor call once,
when others are present in some part

missing downcast from collection

missing int cast when needed

missing public on class or constructor
header

confused identifier (e.g., len for length
or left() for getLeft())

no local variables declared

new never used for constructor calls

void method or constructor returns a
value

modifying a constant (final)

use equals or compareTo method on
primitives, for example
int x; …x.equals(val)

[] – get confusion if access not tested in
rubric

assignment dyslexia, for example,
x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean values

"null" for null

extraneous code which causes side-effect,
for example, information written to output

use interface or class name instead of
variable identifier, for example
Simulation.step() instead of
sim.step()

aMethod(obj) instead of obj.aMethod()

use of object reference that is incorrect,
for example, use of f.move() inside
method of Fish class

use private data or method when not
accessible

destruction of data structure (e.g., by
using root reference to a TreeNode for
traversal of the tree)

use class name in place of super either in
constructor or in method call

*Note: Spelling and case discrepancies for identifiers fall under the
"nonpenalized" category as long as the correction can be unambiguously
inferred from context. For example, "Queu" instead of "Queue". Likewise,
if a student declares "Fish fish;", then uses Fish.move() instead of
fish.move(), the context allows for the reader to assume the object instead
of the class.

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 2: Taxable Items (Design)

PART A:

public double purchasePrice()
{
 return (1 + taxRate) * getListPrice();
}

PART B:

public class Vehicle extends TaxableItem
{
 private double dealerCost;
 private double dealerMarkup;

 public Vehicle(double cost, double markup, double rate)
 {
 super(rate);
 dealerCost = cost;
 dealerMarkup = markup;
 }

 public void changeMarkup(double newMarkup)
 {
 dealerMarkup = newMarkup;
 }

 public double getListPrice()
 {
 return dealerCost + dealerMarkup;
 }

}

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 2

Overview

This question focused on students’ ability to design a hierarchy of classes using inheritance. An Item interface
was provided, along with an abstract TaxableItem class that implemented the interface. The
TaxableItem class contained a private data field for storing a tax rate, a constructor for initializing that field,
and an abstract method for accessing its list price. In part (a) students were required to complete the additional
purchasePrice method, which calculated the purchase price for a TaxableItem using its tax rate and
list price. In part (b) students were required to design and implement a Vehicle class, which was derived from
TaxableItem. This involved declaring private data fields for storing dealer cost and markup, initializing those
fields in a constructor (and using super to initialize the tax rate field from TaxableItem), implementing
the abstract getListPrice method, and defining a method for changing the dealer markup.

Sample: A2A
Score: 9

The student correctly answers parts (a) and (b), earning full credit. The implementation of the getListPrice
method is correct. The student declares a private instance variable to store the list price and correctly initializes
listPrice in the constructor. The listPrice and dealerMarkUp fields are updated in the
changeMarkup method.

Sample: A2B
Score: 6

The student earned a total of 1½ points for part (a): 1 point for correctly calling the getListPrice method and
a ½ point for returning the calculation in part (a). The calculation, however, is incorrect.

The student earned a total of 4½ points for part (b): a ½ point for the class header, 1 point for correctly declaring the
private instance variables, a ½ point for writing a correct constructor header, and 1 point for correctly initializing the
private instance variables with the parameters. No credit was earned for calling the parent constructor. The student
earned 1 point for correctly implementing the changeMarkup method and 1½ points for correctly
implementing the getListPrice method. However, a 1 point deduction was received for reimplementing the
purchasePrice method.

Sample: A2C
Score: 3

The student earned a total of 1½ points for part (a): 1 point for correctly calling the getListPrice method and
a ½ point for returning the calculation in part (a). The calculation is incorrect. The value returned must be a
double value, not an int.

The student earned a total of 1½ points for part (b): a ½ point for the class header and 1 point for correctly declaring
the private instance variables. The constructor header is written incorrectly. It must have three double parameters
(or three parameters whose types match the instance variables) to earn this ½ point. The attempt to initialize the
private instance variables is correct and earned a ½ point. The response did not earn the ½ point for correctness since
both the dealer cost and the mark up fields must be initialized.

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 2 (continued)

The changeMarkup method header does not have a return type and has the wrong parameter type (int). The
assignment of the parameter to the markup field in the changeMarkup method is correct. The student earned a ½
point for writing the changeMarkup method. The implementation of the getListPrice method is missing.
The student received a 1 point deduction for reimplementing the purchasePrice method.

.

