

AP® Computer Science A
2006 Scoring Guidelines

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and
teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement
Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied
in all of its programs, services, activities, and concerns.

© 2006 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP
Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation
Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the
Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and
National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners.
Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

2

Question 1: Daily Schedule

Part A: conflictsWith 1 1/2 points

 +1/2 call OBJ1.overlapsWith(OBJ2)
 +1/2 access getTime of other and this
 +1/2 return correct value

Part B: clearConflicts 3 points

 +2 loop over apptList
 +1/2 reference apptList in loop body
 +1/2 access appointment in context of loop (apptList.get(i))
 +1 access all appointments (cannot skip entries after a removal)

+1 remove conflicts in context of loop
 +1/2 determine when conflict exists (must call conflictsWith)

 +1/2 remove all conflicting appointments (and no others)

Part C: addAppt 4 1/2 points

+1/2 test if emergency (may limit to when emergency AND conflict exists)
+1/2 clear conflicts if and only if emergency
 (must not reimplement clearConflicts code)
+1/2 add appt if emergency

 +2 non-emergency case
 +1/2 loop over apptList (must reference apptList in body)
 +1/2 access apptList element and check for appt conflicts in context of loop
 +1/2 exit loop with state (conflict / no conflict) correctly determined
 (includes loop bound)

+1/2 add appt if and only if no conflict

 +1 return true if any appointment added, false otherwise (must return both)

Usage: -1 if loop structure results in failure to handle empty apptList

AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

3

Question 2: Taxable Items (Design)

Part A: purchasePrice 2 1/2 points

 +1 call getListPrice()

+1 calculate correct purchase price (no penalty if truncate/round to 2 decimal places)

 +1/2 return calculated price

Part B: Vehicle 6 1/2 points

 +1/2 class Vehicle extends TaxableItem
 +1/2 private double dealerCost
 +1/2 private double dealerMarkup (no penalty if also store tax in field)

 +2 1/2 constructor
 +1/2 Vehicle(double ?, double ?, double ?)
 int/float (OK if match fields)
 +1 call parent constructor
 +1/2 attempt using super
 +1/2 correct call: super(rate) (note: must be first line in method)
 +1 initialize dealer cost and markup fields
 +1/2 attempt (must use parameters on RHS or in mutator call)
 +1/2 correct

 +1 changeMarkup
 +1/2 public void changeMarkup(double ?)
 int/float (OK if matches field; no penalty if returns reasonable value)
 +1/2 assign parameter to markup field

 +1 1/2 getListPrice
 +1 public double getListPrice()
 +1/2 return sum of dealer cost and markup fields

Note: -1 usage if reimplement purchasePrice to do anything other than
 return super.purchasePrice();

AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

4

Question 3: Customer List

Part A: compareCustomer 3 points

 +1 1/2 perform comparison
 +1/2 attempt (must call OBJ1.compareTo(OBJ2))
 +1/2 correctly access and compare names
 +1/2 correctly access and compare IDs

 +1/2 return 0 if and only if this = other
 +1/2 return positive if and only if this > other
 +1/2 return negative if and only if this < other

Part B: prefixMerge 6 points

 +1/2 initialize unique variables to index fronts of arrays

 +1 1/2 loop over arrays to fill result
 +1/2 attempt (must reference list1 and list2 inside loop)
 +1 correct (lose this if add too few or too many Customer elements)

 +1 1/2 compare array fronts (in context of loop)
 +1/2 attempt (must call compareCustomer on array elements)
 +1 correctly compare front Customer elements

+1 1/2 duplicate entries
 +1/2 check if duplicate entries found
 +1/2 if duplicates, copy only one to result (without use of additional structure)
 +1/2 update indices into both arrays (list1 and list2)

+1 nonduplicate entries
 +1/2 copy only smallest entry to result (without use of additional structure)
 +1/2 update index into that array only (list1 or list2)

Note: Solution may use constants as returned from part A.

Usage: -1/2 compareTo instead of compareCustomer for Customer objects

AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

5

Question 4: Drop Game (MBS)

Part A: dropLocationForColumn 3 1/2 points

 +1 1/2 loop over Locations in column
 +1/2 correct loop (traverse entire column or until empty location found)
 +1 construct Location object in context of loop
 +1/2 attempt using column
 +1/2 correct

 +1 1/2 find drop Location
 +1/2 check if constructed Location is empty
 +1 if exists, return empty Location with largest row # (no loop, no point)

 +1/2 return null if column is full

Part B: dropMatchesNeighbors 5 1/2 points

 +1 get drop Location
 +1/2 attempt (must call dropLocationForColumn)
 +1/2 correct (must use result)

 +1/2 return false if drop location is null

 +1 1/2 get neighboring pieces
 +1/2 attempt to access adj. neighbors
 (getNeighbor or neighborsOf or row/column access)

+1/2 correctly access 3 E/W/S neighbor Location objects
 +1/2 correctly access 3 neighbor Piece objects

 +2 1/2 determine matches
 +1/2 correct null neighbor test
 +1 compare colors of pieces
 +1/2 attempt (must reference pieceColor)
 +1/2 correct
 +1 return correct Boolean value1

 Usage: -1 environment or missing theEnv

AP® COMPUTER SCIENCE A/AB

2006 GENERAL USAGE

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once when the same usage is correct two or more times can be regarded as an oversight and not penalized. If
the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies*

local variable not declared when any
other variables are declared in some part

default constructor called without parens;
for example, new Fish;

use keyword as identifier

[r,c], (r)(c)or(r,c)instead of [r][c]

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side-effect, for
example a check for precondition

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent

missing () on method call or around
if/while conditions

missing ;s

missing “new” for constructor call once,
when others are present in some part

missing downcast from collection

missing int cast when needed

missing public on class or constructor
header

confused identifier (e.g., len for length
or left() for getLeft())

no local variables declared

new never used for constructor calls

void method or constructor returns a
value

modifying a constant (final)

use equals or compareTo method on
primitives, for example
int x; …x.equals(val)

[] – get confusion if access not tested in
rubric

assignment dyslexia, for example,
x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean values

"null" for null

extraneous code which causes side-effect,
for example, information written to output

use interface or class name instead of
variable identifier, for example
Simulation.step() instead of
sim.step()

aMethod(obj) instead of obj.aMethod()

use of object reference that is incorrect,
for example, use of f.move() inside
method of Fish class

use private data or method when not
accessible

destruction of data structure (e.g., by
using root reference to a TreeNode for
traversal of the tree)

use class name in place of super either in
constructor or in method call

*Note: Spelling and case discrepancies for identifiers fall under the
"nonpenalized" category as long as the correction can be unambiguously
inferred from context. For example, "Queu" instead of "Queue". Likewise,
if a student declares "Fish fish;", then uses Fish.move() instead of
fish.move(), the context allows for the reader to assume the object instead
of the class.

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1: Daily Schedule

PART A:

public boolean conflictsWith(Appointment other)
{
 return getTime().overlapsWith(other.getTime());
}

PART B:

public void clearConflicts(Appointment appt)
{
 int i = 0;
 while (i < apptList.size())
 {
 if (appt.conflictsWith((Appointment)(apptList.get(i))))
 {
 apptList.remove(i);
 }
 else
 {
 i++;
 }
 }
}

ALTERNATE SOLUTION

public void clearConflicts(Appointment appt)
{
 for (int i = apptList.size()-1; i >= 0; i--)
 {
 if (appt.conflictsWith((Appointment)apptList.get(i)))
 {
 apptList.remove(i);
 }
 }
}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1: Daily Schedule (continued)

PART C:

public boolean addAppt(Appointment appt, boolean emergency)
{
 if (emergency)
 {
 clearConflicts(appt);
 }
 else
 {
 for (int i = 0; i < apptList.size(); i++)
 {
 if (appt.conflictsWith((Appointment)apptList.get(i)))
 {

 return false;
 }
 }
 }
 return apptList.add(appt);

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 2: Taxable Items (Design)

PART A:

public double purchasePrice()
{
 return (1 + taxRate) * getListPrice();
}

PART B:

public class Vehicle extends TaxableItem
{
 private double dealerCost;
 private double dealerMarkup;

 public Vehicle(double cost, double markup, double rate)
 {
 super(rate);
 dealerCost = cost;
 dealerMarkup = markup;
 }

 public void changeMarkup(double newMarkup)
 {
 dealerMarkup = newMarkup;
 }

 public double getListPrice()
 {
 return dealerCost + dealerMarkup;
 }

}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 3: Customer List

PART A:

public int compareCustomer(Customer other)
{
 int nameCompare = getName().compareTo(other.getName());
 if (nameCompare != 0)
 {
 return nameCompare;
 }
 else
 {
 return getID() - other.getID();
 }
}

PART B:

public static void prefixMerge(Customer[] list1, Customer[] list2, Customer[] result)
{
 int front1 = 0;
 int front2 = 0;

 for (int i = 0; i < result.length; i++)
 {
 int comparison = list1[front1].compareCustomer(list2[front2]);
 if (comparison < 0)
 {
 result[i] = list1[front1];
 front1++;
 }
 else if (comparison > 0)
 {
 result[i] = list2[front2];
 front2++;
 }
 else
 {
 result[i] = list1[front1];
 front1++;
 front2++;
 }
 }
}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4: Drop Game (MBS)

PART A:

public Location dropLocationForColumn(int column)
{
 for (int r = theEnv.numRows()-1; r >= 0; r--)
 {
 Location nextLoc = new Location(r, column);
 if (theEnv.isEmpty(nextLoc))
 {
 return nextLoc;
 }
 }
 return null;
}

ALTERNATE SOLUTION

public Location dropLocationForColumn(int column)
{
 int maxRow = -1;
 for (int r = 0; r < theEnv.numRows(); r++)
 {
 if (theEnv.isEmpty(new Location(r, column)))
 {
 maxRow = r;
 }
 }

 if (maxRow < 0)
 {
 return null;
 }
 return new Location(maxRow, column);
}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4: Drop Game (MBS) (continued)

PART B:

public boolean dropMatchesNeighbors(int column, Color pieceColor)
{
 Location loc = dropLocationForColumn(column);
 if (loc == null)
 {
 return false;
 }

 Piece n1 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.WEST)));
 Piece n2 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.EAST)));
 Piece n3 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.SOUTH)));
 return (n1 != null && n1.color().equals(pieceColor) &&
 n2 != null && n2.color().equals(pieceColor) &&
 n3 != null && n3.color().equals(pieceColor));
}

ALTERNATE SOLUTION

public boolean dropMatchesNeighbors(int column, Color pieceColor)
{
 Location loc = dropLocationForColumn(column);
 if (loc == null)
 {
 return false;
 }

 ArrayList neighbors = theEnv.neighborsOf(loc);
 int colorCount = 0;
 for (int i = 0; i < neighbors.size(); i++)
 {
 Piece nextNbr = (Piece)(theEnv.objectAt((Location)neighbors.get(i)));
 if (nextNbr != null && nextNbr.color().equals(pieceColor))
 {
 colorCount++;
 }
 }

 return (colorCount == 3);
}

