Question 2

- (a) Answer the following questions that relate to the graphs above. Remember that for any calculations you must clearly indicate how you arrived at your answer. Answers must also include appropriate units.
 - (i) Determine the net change in atmospheric CO_2 concentration between 140,000 years ago and 125,000 years ago.

(1 point possible)

Point is earned for the correct set-up and answer, with numbers shown, and units included.

Note: Lines drawn to x and y-axes were accepted in place of explicit calculation set-up.

140,000 years before present: $CO_2 \sim 200 \text{ ppm}$ (accepted range ~195-205 ppm)

125,000 years before present: $CO_2 \sim 280$ ppm (accepted range ~270-290 ppm)

280 ppm – 200 ppm = an increase of 80 ppm (accepted range 65–95 ppm).

(ii) Calculate the ratio of the change in mean global temperature to the change in atmospheric CO_2 concentration between 140,000 years ago and 125,000 years ago.

(2 points possible)

One point is earned for the correct temperature change calculation showing numbers and including units.

<u>Note</u>: Lines drawn to x and y-axes were accepted in place of explicit calculation.

Temperature 140,000 years ago ~ - 8°C (below present)

Temperature 125,000 years ago ~ +2°C (above present)

 $2^{\circ}C - (-8^{\circ}C) = an$ increase of $10^{\circ}C$ (range $8.5^{\circ}C-11.5^{\circ}C$).

1 point is earned for the correct calculation of ratio of temperature to CO₂ concentration change.

<u>Note</u>: No penalty for ratio calculation based on incorrect answer(s) from above. Range must be consistent with previous values. Percentages not accepted.

Acceptable answers include 10:80 or 10/80 or 10 to 80; 1:8 or 1/8 or 1 to 8.

(iii) Scientists predict that between 1950 and 2050, the atmospheric CO₂ concentration will increase by 200 ppm. Predict the change in mean global temperature between 1950 and 2050 using the ratio that you calculated in part (ii).

(1 point possible)

Point is earned for the correct set-up and answer with correct units.

<u>Note</u>: No penalty if student uses incorrect calculation(s) from above, as long as values are applied correctly. Range must be consistent with previous values.

 $200 \text{ ppm} \times 1^{\circ}\text{C/8} \text{ ppm} = 25^{\circ}\text{C}$ increase in global temperature (accepted range $18^{\circ}\text{C}-34^{\circ}\text{C}$)

© 2006 The College Board. All rights reserved.

Question 2 (continued)

(iv) Describe one major assumption that was necessary to make the prediction in part(iii) above. Discuss the validity of the assumption.

(2 points possible)

One point is earned for a correct assumption and 1 point is earned for an appropriate discussion of the validity of the assumption.

Assumption	Validity of Assumption
Direct relationship exists between CO ₂ and temperature.	Invalid due to anthropogenic increase of other GHGs and/or precursors.
	• CH ₄ , O ₃ , N ₂ O, CFCs, HCFCs, HFCs, halons, NO _x , NO, NO ₂ , CO, VOCs, HCs
	Invalid due to negative feedbacks.Aerosol increase offsets warmingClouds can offset warming
	Invalid due to positive feedbacks.Clouds can enhance warming
	Invalid because temperature change leads CO ₂ concentration change.
	Invalid because correlation does not remain constant over time series period.
	Valid because this has been the case for past 200K years (must refer to time series).Correlation remains constant over time
CO ₂ is the only GHG that impacts temperature.	Invalid due to anthropogenic increase of other GHGs and/or precursors.
	• CH ₄ , O ₃ , N ₂ O, CFCs, HCFCs, HFCs, halons, NO $_x$, NO, NO ₂ , CO, VOCs, HCs
	Valid because this has been the case for past 200K years.Correlation remains constant over time
Change expected to occur over a very short time period.	Invalid because uncharacteristically large changes relative to time series scale:
	 nonlinear fluctuations
	• correlation changes over time

© 2006 The College Board. All rights reserved.

Ouestion 2 (continued)

Assumption	Validity of Assumption
200 ppm CO ₂ concentration change (prediction used as assumption).	Invalid because the change may be greater or less than this value.
Increasing CO ₂ concentrations cause atmospheric temperature to rise.	Invalid because time series shows periods when change in temperature leads the change in CO_2 concentration. Valid because time series shows periods when change in CO_2 concentration leads the change in temperature.
Antarctic data can be applied to assume global temperature changes.	Invalid because there are regional variations in the magnitude of temperature fluctuations over time.
Measurement techniques are precise.	Valid because of scientific consensus of data. Invalid because of measurement uncertainty.

(b) Identify and describe TWO major causes for the predicted 200 ppm increase in atmospheric CO_2 concentration between 1950 and 2050.

(2 points possible)

One point is possible for each major cause of CO_2 increase identified if linked with an appropriate description.

- Continuing burning of fossils fuels by a growing population
- Increased per capita usage of fossil fuels
- Increased fossil fuel use for energy production
- Increased fossil fuel use for transportation
- Increased fossil fuel use for industry
- Increased ocean temperature results in release of dissolved CO₂
- Land-clearing and burning for increasing food production
- Defore station (even though this involves the cycling of existing carbon, defore station is indicated as a CO_2 sink in the texts and is accepted)
- Lack of development of alternative energy solutions

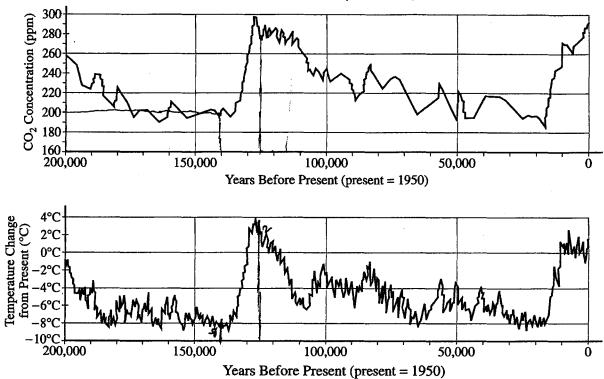
(c) Identify TWO gases other than CO₂ that contribute to the anthropogenic increase in mean global temperature. For each gas, describe a major human activity that leads to its release.

(2 points possible)

One point is possible for each gas that contributes to an anthropogenic increase in mean global temperature IF linked to an appropriate description of a major human activity that leads to the release of that gas.

Note: Increased atmospheric water (H₂O) vapor is <u>not</u> a direct result of human activity.

© 2006 The College Board. All rights reserved.


Question 2 (continued)

Greenhouse Gas	Human Activity
Methane (CH4)	Production of rice
	Landfill use
	Cattle/sheep ranching
	Creation of wetlands/bogs
	Leaks from pipelines, refineries, and coal mines
	No credit earned for CH ₄ escapes from melting permafrost because melting is not a direct result of human activity.
Ozone (O ₃)	Photochemical smog resulting from internal combustion engines, vehicle exhaust
Nitrous oxide (N ₂ O)	Burning of petroleum products, biomass, nitrogen-rich fuels (particularly coal) Fertilizers Feedlots (CAFO and/or CAFL) and dairy farms
CFCs (freons), HFCs, and HCFCs	Used in refrigerators and air conditioners, in foam production, to clean electronics, and formerly as propellants
Halons	Used in fire extinguishers

Greenhouse Gas Precursor	Human Activity
NO, NO $_2$, (NO $_x$)	Coal burning, internal combustion engines (fossil fuels too generic)
CO	Incomplete combustion of fossil fuels
VOCs	Gasoline/petroleum evaporation Paints and solvents Aerosols
HCs	Gasoline/petroleum incomplete combustion evaporation

 $\ensuremath{\textcircled{O}}$ 2006 The College Board. All rights reserved.

2. According to atmospheric temperature and CO₂ concentration records derived from Antarctic ice cores, Earth's climate has undergone significant changes over the past 200,000 years. Two graphs are shown below. The upper graph shows the variation in atmospheric CO₂ concentration, and the lower graph shows the variation in air temperature. Both graphs cover the same time period from approximately 200,000 years ago up until the year 1950, which is represented as year 0 on the graphs.

TEMPERATURE AND CO₂ CONCENTRATION IN THE ATMOSPHERE OVER THE PAST 200,000 YEARS

- (a) Answer the following questions that relate to the graphs above. Remember that for any calculations you must clearly indicate how you arrived at your answer. Answers must also include appropriate units.
 - (i) Determine the net change in atmospheric CO₂ concentration between 140,000 years ago and 125,000 years ago.
 - (ii) Calculate the ratio of the change in mean global temperature to the change in atmospheric CO₂ concentration between 140,000 years ago and 125,000 years ago.
 - (iii) Scientists predict that between 1950 and 2050, the atmospheric CO_2 concentration will increase by 200 ppm. Predict the change in mean global temperature between 1950 and 2050 using the ratio that you calculated in part (ii).
 - (iv) Describe one major assumption that was necessary to make the prediction in part (iii) above. Discuss the validity of the assumption.

GO ON TO THE NEXT PAGE.

-8-

- (b) Identify and describe TWO major causes for the predicted 200 ppm increase in atmospheric CO₂ concentration between 1950 and 2050.
- (c) Identify TWO gases other than CO_2 that contribute to the anthropogenic increase in mean global temperature. For each gas, describe a major human activity that leads to its release.

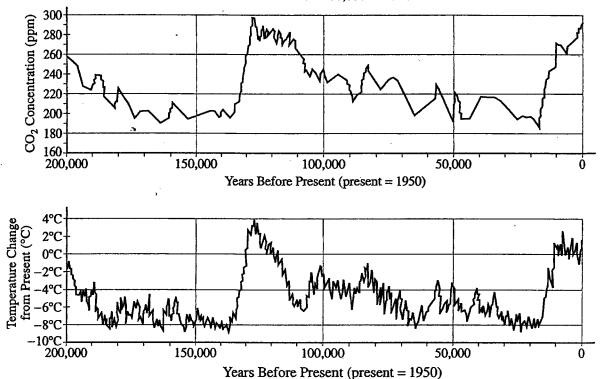
0 140,000 years = 200 ppm Concrention at 990 n 90 AM Concontration = AC Negse, 20 200 pm 80 ppm net change in atmos Con concentration btun. 140 000 and 125,000 years ago Mean global Temperature at 149,000 yearago iù. -8°C 990 = 2°C 125,000 1 p°C 2°C-1 net PPM . YPARS 1095 200 ÌÙÙ 200 ppm increase in Mean globa ÌV. assump. necessary 1295

ZA2

-9-

ADDITIONAL PAGE FOR ANSWERING QUESTION 2 In Dart 13: was that the concentration of atmospheric the prediction Man and 1A The 000 yeal's SCO 999 10 CAN assume CA that 600 ねっへ Ìς compet. 9 { Max b. the predict MáĵÐ WO for Increase rque at concentration btun. 1950 and 2050 IØNEN+ menta 9NC 101 uM MA Ø Î ca \mathcal{D} fon MEANS mo 65 ina NPA An 5 निष्टिऽ Q BANS ∇I ea a na П Ŋę.

2A3


-10-

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

ADDITIONAL PAGE FOR ANSWERING QUESTION 2 bute to the Cr 100 <u>999es</u> other <u>tha</u>A That gre: anthropegen temperature mon 96691 \mathcal{M} hearly hich k ectal lv ħ 4e Anches CAT 1919e SAC Cati faal 10 CO eleasers 9M Farme hja lS are dall hane me 2 15 grother ,de Meenhouse 995, from Arve coal burni plants. No/egses MANY air pollutants Carl the . . GO ON TO THE NEXT PAGE. -11-

2Ag

2. According to atmospheric temperature and CO₂ concentration records derived from Antarctic ice cores, Earth's climate has undergone significant changes over the past 200,000 years. Two graphs are shown below. The upper graph shows the variation in atmospheric CO₂ concentration, and the lower graph shows the variation in air temperature. Both graphs cover the same time period from approximately 200,000 years ago up until the year 1950, which is represented as year 0 on the graphs.

TEMPERATURE AND CO₂ CONCENTRATION IN THE ATMOSPHERE OVER THE PAST 200,000 YEARS

- (a) Answer the following questions that relate to the graphs above. Remember that for any calculations you must clearly indicate how you arrived at your answer. Answers must also include appropriate units.
 - (i) Determine the net change in atmospheric CO₂ concentration between 140,000 years ago and 125,000 years ago.
 - (ii) Calculate the ratio of the change in mean global temperature to the change in atmospheric CO₂ concentration between 140,000 years ago and 125,000 years ago.
 - (iii) Scientists predict that between 1950 and 2050, the atmospheric CO₂ concentration will increase by 200 ppm. Predict the change in mean global temperature between 1950 and 2050 using the ratio that you calculated in part (ii).
 - (iv) Describe one major assumption that was necessary to make the prediction in part (iii) above. Discuss the validity of the assumption.

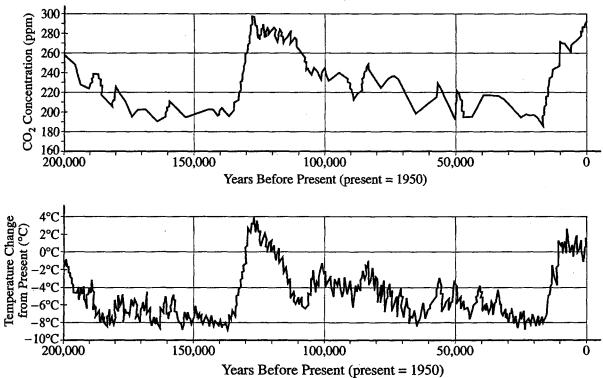
GO ON TO THE NEXT PAGE.

-8-

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

- (b) Identify and describe TWO major causes for the predicted 200 ppm increase in atmospheric CO₂ concentration between 1950 and 2050.
- (c) Identify TWO gases other than CO_2 that contribute to the anthropogenic increase in mean global temperature. For each gas, describe a major human activity that leads to its release.

a.) (i.) 280ppm 200ppm= 80ppm -10°C 1°C : Sppm (ii.) (iii) Sec = 200 8 x=25°C Ð (iv) The major assumption I had to grate was that the years app and 125,000 years ago was ratio between 140,000 the the ratio between 1950 an 2050. In order same ratio os the the scientist to come up with their prediction of CO2 concentration, they also had to assume that the Patio was the same as 140,000 years 125,000 years ago, therefore it is only logical to assume ago the same and have only one variable in the equation (6) One cause for the predicted 200 ppm increase in atmospheric concentration is the increased use or fossil fuels to create energy and at the Same emitting large ammounts of Cas air. Another cause for into the time concentration could be 200 ppm increase in atmospheric the. predicted attributed to mass ammounts of tree harvesting and defonestation like the rain-forest. The loss of these lands would pres in arras their wouldn? be anarobic respiration, the a 1005 of trees handle an abundance the OD. and into oxygen, therefore causing of Co in the atmosphere


ZB,

-9-

ADDITIONAL PAGE FOR ANSWERING QUESTION 2 C.) Of and CD both contribute to the anthropogenic increase in mean global temprature. are released C hair oprays and through like Cleaners that need propelants. CO is other things when water heaters are broken released . . GO ON TO THE NEXT PAGE. -10-© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

ZC,

climate has undergone significant changes over the past 200,000 years. Two graphs are shown below. The upper graph shows the variation in atmospheric CO_2 concentration, and the lower graph shows the variation in air temperature. Both graphs cover the same time period from approximately 200,000 years ago up until the year 1950, which is represented as year 0 on the graphs.

TEMPERATURE AND CO₂ CONCENTRATION IN THE ATMOSPHERE OVER THE PAST 200,000 YEARS

- (a) Answer the following questions that relate to the graphs above. Remember that for any calculations you must clearly indicate how you arrived at your answer. Answers must also include appropriate units.
 - (i) Determine the net change in atmospheric CO₂ concentration between 140,000 years ago and 125,000 years ago.
 - (ii) Calculate the ratio of the change in mean global temperature to the change in atmospheric CO_2 concentration between 140,000 years ago and 125,000 years ago.
 - (iii) Scientists predict that between 1950 and 2050, the atmospheric CO_2 concentration will increase by 200 ppm. Predict the change in mean global temperature between 1950 and 2050 using the ratio that you calculated in part (ii).
 - (iv) Describe one major assumption that was necessary to make the prediction in part (iii) above. Discuss the validity of the assumption.

GO ON TO THE NEXT PAGE.

- $2C_2$
- (b) Identify and describe TWO major causes for the predicted 200 ppm increase in atmospheric CO₂ concentration between 1950 and 2050.
- (c) Identify TWO gases other than CO_2 that contribute to the anthropogenic increase in mean global temperature. For each gas, describe a major human activity that leads to its release.

temperature. For each gas, describe a major human activity that leads to its release.
a) (i) The net change in atmospheric COZ between
140,000 yalyears ago) 125,000 ya is about 10 Gppm.
fin the ratio of change is a bast 70%
(iii) The vatio is 130%
(iv) My assumption was that has the
CO2 concentration increases so does
the temperature. That is a valid assumption
because in the past years it has been
true according to the graph.
b) Two major causes for the increase in
atmospheric CO2 are increasing number
of people on the planet. People require
energy. At the moment energy requires
coal fossit to be burned which puts COZ
into the atmosphere. Another cause
is people drive cars and cars pollute.
OCEC's, people release CEC's through
Aersol cans.

-9-

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] ENVIRONMENTAL SCIENCE 2006 SCORING COMMENTARY

Question 2

Overview

This question was designed to assess students' ability to analyze data, make a prediction based on calculations using these data, and apply critical thinking skills to determine the validity of this prediction. Analysis, manipulation, and interpretation of these data provide a framework for students to view science as a process.

Sample: 2A Score: 10

Part (a): One point was earned in (ai) for giving the correct CO_2 concentration change calculation, including units. Two points were earned in (aii): 1 point for the correct temperature change calculation, including units, and 1 point for the correct ratio calculation. One point was earned in (aiii) for the correct temperature change calculation using the ratio from above. Two points were earned in (aiv): 1 point for the assumption that there is a near-perfect correlation between temperature and CO_2 concentration, and 1 point for relating this relationship to that indicated by the graphs.

Part (b): Two points were earned: 1 point for linking growth in coal-burning power plants to an exponentially growing population, and 1 point for linking deforestation to the loss of a CO_2 sink.

Part (c): Two points were earned: 1 point for mentioning methane (linked to cattle ranches), and 1 point for saying that N_2O is emitted by coal-burning power plants.

Sample: 2B Score: 6

Part (a): One point was earned in (ai) for giving the correct CO_2 concentration change calculation, including units. The first point in (aii) was not earned because the temperature change calculation is incorrect (-10°C). The second point in (aii) was earned for the correct ratio calculation, even though it is based on an incorrect temperature change value. One point was earned in (aii) for the temperature change calculation. One point was earned in (aiv) for the assumption that the ratio between 140,000–125,000 years ago will be the same between 1950 and 2050. The second point was not earned because the description is only a repetition of the assumption.

Part (b): One point was earned for linking increased fossil fuel use and energy creation. The second point was not earned because the loss of the CO_2 sink caused by deforestation is incorrectly attributed to anaerobic respiration.

Part (c): One point was earned for citing CFCs, used in hairsprays and propellants. The second point was not earned because the student erroneously states that CO is released by broken water heaters.

AP[®] ENVIRONMENTAL SCIENCE 2006 SCORING COMMENTARY

Question 2 (continued)

Sample: 2C Score: 4

Part (a): No point was earned in (ai) because the CO_2 concentration change is not calculated. Neither point was earned in (aii) because the temperature change and ratio are not calculated. No point was earned in (aiii) because the temperature change is not calculated. Two points were earned in (aiv): 1 point for the assumption that CO_2 and temperature changes are related, and 1 point for relating this relationship to that shown on the graphs.

Part (b): One point was earned for linking increased population and coal burning for energy production. The second point was not earned because the link between cars and pollution is too vague.

Part (c): One point was earned for stating that CFCs are released by aerosol cans. The second point was not earned because a second gas is not identified.