AP[®] ENVIRONMENTAL SCIENCE 2008 SCORING GUIDELINES

Question 2

(a) Calculate the volume, in m^3 , of each of the following:

(Two points can be earned in each of parts (a)(i) and (a)(ii): 1 point for a correct setup, and 1 point for the correct answer.)

(i) The water infiltrated through the landfill per year

 $200 \text{ mm rain } \times \frac{1 \text{ m}}{1,000 \text{ mm}} = 0.2 \text{ m rain}$

(ii) The leachate that is treated per year

 $1,000 \text{ m}^3 \times 0.9 (90\%) = 900 \text{ m}^3$

Note: If the answer to (a)(i) is incorrect, then 0.9 times that answer still earns full credit in (a)(ii).

(b) Given that the cadmium concentration in the water draining from the landfill is 2.0 g/m³, calculate the mass, in kg, of cadmium that is released into the surrounding soil per year.

(Two points can be earned: 1 point for the correct setup, and 1 point for the correct answer.)

Note: The student can either begin with the difference between the answers for (a)(i) and (a)(ii) or take 10 percent of the answer from (a)(i). Metric conversions do not necessarily have to be shown.

100 m ³ drainage	02 a Cd	1 ka	– 02 kg Cd/year
1 year	1 m ³	1,000 g	_ = 0.2 kg 0u/yeur

(c) What is the annual cost of treating the leachate from the drainage system?

(Two points can be earned: 1 point for the correct setup, and 1 point for the correct answer.)

Note: The student must use the answer from (a)(ii).

© 2008 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

AP[®] ENVIRONMENTAL SCIENCE 2008 SCORING GUIDELINES

Question 2 (continued)

(d) Discuss TWO viable methods for reducing the amount of cadmium entering the municipal waste input.

(Two points can be earned: 1 point for a discussion of each viable method. Only the first two methods are scored.)

Category of Reduction	Method or Action		
Disposal options	• Sort waste stream for cadmium-containing products (batteries, e- waste, paints and pigments, stabilizers, pesticides) headed to landfills		
	• Deposit these materials at a dropoff site or recycling facility, or return to manufacturer		
New/substitute technology or alternate materials	Avoid use of cadmium-containing products by:		
	• using rechargeable batteries (e.g., lithium rechargeable)		
	• applying new technology and/or alternate materials that do not use cadmium		
Incentives and/or disincentives	• Place restrictions on disposal of materials that contain cadmium (batteries, e-waste, paints and pigments, stabilizers, pesticides)		
	• Pass cradle-to-grave (RCRA) legislation		
	Provide rebate incentives for using cadmium-free products		
	• Provide incentives for manufacturing cadmium-free products (e.g., research grants)		
	 Place a deposit (payable on return) or surcharge on cadmium- containing products 		
Education	Make the public aware of (any one of the following):		
	• concerns (health, environmental) associated with cadmium		
	 methods of cadmium-containing product/battery reduction/recycling 		
	• availability of new/substitute technology		

AP[®] ENVIRONMENTAL SCIENCE 2008 SCORING GUIDELINES

Question 2 (continued)

(e) Explain a shortcoming of ONE of the methods that you identified in part (d).

(One point is earned for an explanation that is linked to an accepted method described in part (d).)

Difficulty and/or expense identified with:

- educating the public about benefits of recycling waste that contains cadmium
- providing efficient systems for cadmium waste pickup (recycling/reuse)
- sorting
- achieving 100 percent cadmium removal from waste or 100 percent replacement
- safe disposal, new technology, and substitute material development
- enforcement/regulations/compliance
- recycling (e.g., energy requirements)
- determining if a product contains cadmium

ADDITIONAL PAGE FOR ANSWERING QUESTION 2
(1.)
$$IDDmm/yr$$
. = $50^{\circ}l_{0}$ of $200mm/yr$. $I - 2A$
 $1.0 \times 10^{2} mm$ Im = $1.0 \times 10^{-1} m$ H_{20}
 $1.0 \times 10^{4} m^{2})(1.0 \times 10^{-1} m) = \int I.0 \times 10^{3} m^{3} H_{20}/yr$.
(1.0 × $10^{3} y$. A)
(1.0 × $10^{2} m^{3}$) (1.0 × 10^{-1}) = $1.0 \times 10^{2} m^{3}$ (cachate in soil
 $1.0 \times 10^{2} m^{3}$ [2.09] [1.0 × 10^{-1}] = 2.0×10^{-1} Hg (admium)
m³ 1.0 × $10^{3} g$
(.) $9.0 \times 10^{2} m^{3}$ $(0.0 \times 10^{-1} - $9.0 \times 10^{3}]$

d.) The city of Fremont municipal solid-waste landfill could enforce regulations that limited the amount of cadmium permitted in the landfill. For example, some items (ontaining cadmium would be pronibited at the landfill 4 disposed of in another way or recycled. Another method includes the incineration of cadmium-containing waste.

e) The incineration of cadmium-containing waste would Weeky release case environmental pairticulate pollutants into the air, damaging the lungs & nerve Tissne of those Who breathe them.

GO ON TO THE NEXT PAGE.

-9-

I-2B, ADDITIONAL PAGE FOR ANSWERING QUESTION 2 50% of rainfall: (.5)(200 mm/yr) = 100 mm/yr infitrated (a) (i) through the landfill rainfull 100 mm =.1 m m rainfall) (10,000 m2 landfill) = $(\cdot |$ 1,000 m3 water infiltrated per year 90% of londfill water (ii) (.9) (1000 m3 water infitrated thro landfill leachate treated $\# 90 \text{ m}^3$ $(.1)(1,000 \text{ m}^3) = 10 \text{ m}^3$ (6).002 Da. m3 surrounding 501 .02 Kg cadminm _ 002 ٥ =\$900 20 m annua cost С m3 (d) Cadmium entering the municipal waste input can be. reduced by finding an atternative use for the cadmium. Usuble cadmium could be stored and used instead of put into a landfill. Cadmium entiring the municipal waste input can using a more efficient drahage syst reduced 64 that be able to drain more adminim would and

GO ON TO THE NEXT PAGE.

-9-

I-2 B2 ADDITIONAL PAGE FOR ANSWERING QUESTION 2 send it to be treated. This way less cadmim would end up in the landfill.

(d)ning with making more efficient Fins is that they would be draina This high economic cost might pensive ex the public think that it's make 4 it to purchase more not dramage systems. e

GO ON TO THE NEXT PAGE.

-10-

©2008 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

I-20 ADDITIONAL PAGE FOR ANSWERING OUESTION 2 (a) (i) volume of water landfill: thraigh the trotor З <u>10,000</u>m² m m³. ∞ tracted: volume leac hate 11 OF 90% of treated i O900 m treated qm3 (bŚ cadmium 3 nm? Kalm³ cadmium Ka/m³ Cadmium \$ m³ 200 to treat the leachate PC admium amounts could be reduced trom the municipal there somewhere else to nstead inout S TT. landfill 20 Clo Cul rt could into N T TING more useful form addition. ho tiltorod further into 0 petter If initial drainage Sustem the Rainoped there concentration dral with in the Dirocu no 2.9 ot a to Sustem municipal P Eipthor methods mentioned above would be tho time consuming. Fixing/ adding to both COST and the f OF money 1201 11TPR lot SI G COrrectly Many complain about the cost MULVER tho might m ture the would be more efficient tom and CIL in the differences made t-solf fr GO ON TO THE NEXT PAGE. -9-

©2008 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

AP[®] ENVIRONMENTAL SCIENCE 2008 SCORING COMMENTARY

Question 2

Overview

The question assessed students' abilities to analyze environmental information from a schematic diagram as well as text. The outcome of these analyses should have been a correct computation of landfill values for infiltrated water, cadmium-containing leachate, cadmium released into surrounding soil, and the annual costs associated with treating the leachate. The question also measured students' abilities to recognize viable methods of waste-stream reduction for cadmium and the inherent shortcomings associated with the implementation of these methods.

Sample: I-2A Score: 9

Part (a)(i): 2 points were earned—1 for the correct setup and 1 for the correct answer.

Part (a)(ii): 2 points were earned—1 for the correct setup and 1 for the correct answer.

Part (b): 2 points were earned—1 for the correct setup and 1 for the correct answer.

Part (c): 2 points were earned—1 for the correct setup and 1 for the correct answer.

Part (d): 1 point was earned for stating that the city "could enforce regulations," which leads to alternate disposal. Incineration is not a viable method.

Part (e): No points were earned. Since incineration is not viable, the shortcoming did not earn a point.

Sample: I-2B Score: 5

Part (a)(i): 2 points were earned for the correct setup and the correct answer.

Part (a)(ii): 1 point was earned. The student makes computational errors that limit the score.

Part (b): No points were earned. The setup is nearly correct, but the computation of 10 m^3 of infiltration into the surrounding soil should equal 100 m^3 . This incorrect volume leads to an incorrect calculation and final value.

Part (c): 2 points were earned. In this case, the student is not penalized a second time for the incorrect computation in part (a)(ii). The student earned 1 point for a correct setup (bringing down the answer from part (a)(ii) and multiplying by \$10/m³). As a result, the answer also earned a point.

Part (d): No points were earned because "an alternative use for the cadmium" is not the same thing as an alternative to cadmium. The second method refers to cadmium already in the landfill.

Part (e): No points were earned because the shortcoming is linked to a nonviable method.

Sample: I-2C Score: 3

Part (a)(i): 1 point was earned for the correct value.

AP[®] ENVIRONMENTAL SCIENCE 2008 SCORING COMMENTARY

Question 2 (continued)

Part (a)(ii): 2 points were earned for the correct setup and the correct answer.

Part (b): No points were earned.

Part (c): No points were earned. The student incorrectly applies the kg value from part (b).

Parts (d) and (e): No points were earned in part (d) because the first method is too vague and the second refers to cadmium already in the landfill. Part (e) does not link to a viable method in part (d).