
AP® COMPUTER SCIENCE A
2009 SCORING GUIDELINES

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 3: Battery Charger

Part (a) getChargingCost 5 points

 +1 1/2 accesses array elements
 +1/2 accesses any element of rateTable

+1/2 accesses an element of rateTable using an index derived from
 startHour

 +1/2 accesses multiple elements of rateTable with no out-of-bounds access
potential

 +2 1/2 accumulates values
 +1/2 declares and initializes an accumulator
 +1/2 accumulates values from elements of rateTable
 +1/2 selects values from rateTable using an index derived from

startHour and chargeTime
 +1 determines correct sum of values from rateTable based on

startHour and chargeTime

 +1 value returned
 +1/2 returns any nonconstant (derived) value
 +1/2 returns accumulated value

Part (b) getChargeStartTime 4 points

 +1/2 invokes getChargingCost or replicates functionality with no errors

 +1 determines charging cost

+1/2 considers all potential start times; must include at least 0 … 23
+1/2 determines charging cost for potential start times
Note: No penalty here for parameter passed to getChargingCost that violates its
preconditions (e.g., 24)

 +1 compares charging costs for two different start times

 +1 determines minimum charging cost based on potential start times

Note: Penalty here for using result of call to getChargingCost that violates its
preconditions (e.g., 24)

 +1/2 returns start time for minimum charging cost

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2009 SCORING COMMENTARY

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 3

Overview

This question focused on array traversal, abstraction, and algorithms for accumulation and finding a
minimum. Students were provided with the framework of the BatteryCharger class that included a
private array instance variable with exactly 24 int elements, and they were asked to implement two
instance methods. The first method, getChargingCost, required calculation of a total charging cost
given a start time (startHour) and a number of hours (chargeTime). This could be accomplished by
accessing elements of the instance array, beginning with the element at index startHour, and
traversing in a circular manner (for example, by using the modulus operator), accumulating the values from
the array, and returning the sum. The second method, getChargeStartTime, required students to
return the start time that would allow the battery to be charged at minimal cost. This was best
accomplished by invoking the getChargingCost method from part (a) for each of the 24 potential start
times, comparing the results to determine which achieve the minimum charging cost, and returning that
start time.

Sample: A3a
Score: 9

In part (a) the student correctly accesses an element from rateTable using an index derived from
startHour. The loop body demonstrates accessing multiple elements of rateTable with no out-of-
bounds potential. The student declares and initializes an accumulator and accumulates values from
rateTable using an index derived from startHour and chargeTime. A sum of the values from
rateTable is correctly determined and returned. Part (a) earned all 5 points.

In part (b) the student correctly invokes getChargingCost. For each potential start time (0 through
23), the charging cost is determined. The student compares two charging costs and correctly determines
the minimum charging cost. The student correctly initializes and returns the start time for the minimum
charging cost. Part (b) earned all 4 points.

Sample: A3b
Score: 6

In part (a) the student correctly accesses an element from rateTable using an index derived from
startHour, thus earning the first two ½ points. Since there is an out-of-bounds potential if a wrap
around from rateTable[23] to rateTable[0] is necessary, the student did not earn this ½ point.
The student declares and initializes an accumulator and accumulates values selected from rateTable
based on startHour and chargeTime, thus earning three ½ points. Since the correct sum will not be
determined in the case where a wrap around is necessary, the student did not earn 1 point. A derived
accumulated value is returned, thus earning the student the last two ½ points. Part (a) earned 3½ points.

In part (b) the student correctly invokes getChargingCost, thus earning the first ½ point. The only
start times considered are 0 through 22; consequently, the student did not earn the second ½ point. For
each start time considered, the charging cost is determined, thus earning the student ½ point. The
student compares two charging costs and earned 1 point. Since the initial value of lowPrice is set to a
constant, which may be less than all charging costs, the 1 point for determining the minimum charging
cost was not earned. The start time for the assumed minimum charging cost is returned, so the last
½ point was earned. Part (b) earned 2½ points.

AP® COMPUTER SCIENCE A
2009 SCORING COMMENTARY

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 3 (continued)

Sample: A3c
Score: 3

In part (a) the student accesses an element from rateTable using an index derived from startHour
and earned the first two ½ points. Since the access occurs outside the loop, only one element of
rateTable is accessed, so the student did not earn the next ½ point. There is no accumulator, so the
student failed to earn the 2½ “accumulates value” points. The student earned ½ point because a derived
value is returned. But since the return value is not an accumulated value, the student did not earn the final
½ point. Part (a) earned 1½ points.

In part (b) the student did not earn the first ½ point because getChargingCost is not invoked correctly.
The student does not consider all potential start times (0 through 23) because the return statement inside
the loop may cause a premature exit. Consequently, the student did not earn the second ½ point. For each
start time considered, the student determines a charging cost, thus earning the next ½ point. The student
performs a comparison of charging costs and earned 1 point. The student did not earn 1 point for determining
a minimum charge time. The student does not return a start time so did not earn the final ½ point. Part (b)
earned 1½ points.

