
© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first. To maintain scoring intent, a single error is generally accounted for only once
per question thereby mitigating multiple penalties for the same error. The error categorization below is for cases not
adequately covered by the question-specific rubric. Note that points can only be deducted if the error occurs in a part that
has earned credit via the question-specific rubric. Any particular error is penalized only once in a question, even if it
occurs on different parts of that question.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies if no
ambiguity*

local variable not declared if others are
declared in some part

use keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without parens;
e.g., new Fish;

missing () on parameterless method call

missing () around if/while conditions

missing ; when majority are present

missing public on class or constructor
header

extraneous [] when referencing entire
array

extraneous size in array declaration,
e.g., int[size] nums = new int[size];

confused identifier (e.g., len for length
or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use equals or compareTo method on
primitives, e.g., int x; …x.equals(val)

array/collection access confusion ([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of variable
identifier; e.g., Bug.move() instead of
aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by parameter)

use class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counter example, note that if a student
declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the reader to
assume the object instead of the class.

Applying Minor Errors (½ point):
A minor error that occurs exactly
once when the same concept is
correct two or more times is
regarded as an oversight and not
penalized. A minor error must be
penalized if it is the only
instance, one of two, or occurs
two or more times.

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1: Master Order

Part (a) getTotalBoxes 3 points
Intent: Compute and return the sum of the number of boxes of all cookie orders in this.orders

 +1 Considers all CookieOrder objects in this.orders
 +1/2 Accesses any element of this.orders
 +1/2 Accesses all elements of this.orders with no out-of-bounds
 access potential

+1 1/2 Computes total number of boxes
 +1/2 Creates an accumulator (declare and initialize)
 +1/2 Invokes getNumBoxes on object of type CookieOrder
 +1/2 Correctly accumulates total number of boxes

+1/2 Returns computed total

Part (b) removeVariety 6 points
Intent: Remove all CookieOrder objects from this.orders whose variety matches cookieVar;
return total number of boxes removed

 +4 Identifies and removes matching CookieOrder objects
 +1/2 Accesses an element of this.orders
 +1/2 Compares parameter cookieVar with getVariety() of a
 CookieOrder object (must use .equals or .compareTo)
 +1 Compares parameter cookieVar with getVariety() of all
 CookieOrder objects in this.orders, no out-of-bounds access potential

+1/2 Removes an element from this.orders
+1/2 Removes only matching CookieOrder objects

 +1 Removes all matching CookieOrder objects, no elements skipped

 +1 1/2 Computes total number of boxes in removed CookieOrder objects
 +1/2 Creates an accumulator (declare and initialize)
 +1/2 Invokes getNumBoxes on object of type CookieOrder
 +1/2 Correctly accumulates total number of boxes
 (must be in context of loop and match with cookieVar)

 +1/2 Returns computed total

Usage:

–1 consistently references incorrect name instead of orders, of potentially correct type
–1 1/2 consistently references incorrect name instead of orders, incorrect type
 (e.g., this, MasterOrder)

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1: Master Order

Part (a):

public int getTotalBoxes() {
 int sum = 0;
 for (CookieOrder co : this.orders) {
 sum += co.getNumBoxes();
 }
 return sum;
}

Part (b):

public int removeVariety(String cookieVar) {
 int numBoxesRemoved = 0;
 for (int i = this.orders.size() - 1; i >= 0; i--) {
 if (cookieVar.equals(this.orders.get(i).getVariety())) {
 numBoxesRemoved += this.orders.get(i).getNumBoxes();
 this.orders.remove(i);
 }
 }
 return numBoxesRemoved;
}

// Alternative solution (forward traversal direction):

public int removeVariety(String cookieVar) {
 int numBoxesRemoved = 0;
 int i = 0;
 while (i < this.orders.size()) {
 if (cookieVar.equals(this.orders.get(i).getVariety())) {
 numBoxesRemoved += this.orders.get(i).getNumBoxes();
 this.orders.remove(i);
 } else {
 i++;
 }
 }
 return numBoxesRemoved;
}

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1

Overview

This question focused on the ArrayList data structure, element access and removal, algorithms that
required processing all elements, and using instance data. Students were provided with the frameworks
for two classes, CookieOrder and MasterOrder, and were asked to implement two methods in the
MasterOrder class. In part (a) students were required to implement the method getTotalBoxes
that returns the sum of the number of boxes of all of the cookie orders in the ArrayList instance variable.
This could be accomplished by invoking getNumBoxes on each element of the list, accumulating and
returning the sum. In part (b) students were required to implement the removeVariety method,
which removes from the ArrayList instance variable all CookieOrder objects that have the same
variety as the parameter, maintains an accumulator of the number of boxes removed, and returns the
accumulator's final value. This could be accomplished by first invoking getVariety on each element of
the list and performing a string comparison with the parameter. If the two strings match, the result of
invoking getNumBoxes would be added to an accumulator and the remove method invoked to delete
that order from the list. The accumulated total needed to be returned at the end of the method.

Sample: 1A
Score: 9

In part (a) the initial check for a zero-length list is unnecessary, but it does not cause a problem with the
solution. The student correctly declares and initializes an accumulator. The student then correctly uses an
indexed for-loop to access every element of the ArrayList, calls getNumBoxes on each element and
accumulates the sum. When the loop ends, the sum is returned. Part (a) earned all 3 points.

In part (b) the student correctly declares and initializes an accumulator and uses a descending indexed
for-loop to access every element of the ArrayList. The student correctly invokes getVariety on
each CookieOrder and compares the result with the cookieVar parameter. If they match, the
student invokes getNumBoxes and adds the result to the accumulator. The student then uses remove
to delete that cookie order from the list. After the loop, the student returns the accumulated total number
of boxes removed. Part (b) earned all 6 points.

Sample: 1B
Score: 6

In part (a) the initial check for a zero-length list is unnecessary, but it does not cause a problem with the
solution. The student correctly declares and initializes an accumulator. The student then correctly uses an
indexed for-loop to access every element of the ArrayList. However, the student does not call
getNumBoxes on each element, and the accumulator is not counting boxes, so those two ½ points were
not earned. A computed total is returned, earning ½ point. Part (a) earned 2 points.

In part (b) the reference orders[i] earned ½ point for “Accesses an element of this.orders.” The
call to getVariety and the comparison to the cookieVar parameter are done correctly. The student
uses orders.removeOrder(i) instead of orders.remove(k) and so did not earn the ½ point for
“Removes an element.” The attempted removal is appropriately guarded and earned the ½ point for
“Removes only matching CookieOrder objects.” The student uses an ascending index for-loop without

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1 (continued)

the necessary index correction after removals and so did not earn the “Removes all matching” point. The call
to getNumBoxes is good, as are the accumulation and the final return of the total number of boxes. Part (b)
earned 4½ points.

The student uses orders[k] and orders[i] instead of orders.get(k) and orders.get(i)
throughout the solution. This array/collection access confusion ([] get) lost ½ point under the General
Scoring Guidelines.

Sample: 1C
Score: 3

In part (a) the missing call to getNumBoxes did not earn the ½ point for “Invokes getNumBoxes” or the
½ point for “Correctly accumulates.” Because sum gets a calculated value beyond its initialization, the
statement “return sum;” earned ½ point for “Returns computed total.” Part (a) earned 2 points.

In part (b) the reference orders[i] earned ½ point for “Accesses an element of this.orders.” There
is no use of parameter cookieVar and there is no call to getVariety, so the student did not earn any
of the score points for the comparison. There is no attempt to remove items from orders, so none of the
points under “Removes” was earned. The statement “int removed = 0;” earned ½ point for “Creates
an accumulator.” The missing call to getNumBoxes did not earn the ½ point for “Invokes getNumBoxes”
or the ½ point for “Correctly accumulates.” Because removed gets a calculated value beyond its
initialization, the statement “return removed;” earned ½ point for “Returns computed total.” Part (b)
earned 1½ points.

The student uses orders[i] instead of orders.get(i) throughout the solution. This array/collection
access confusion ([] get) lost ½ point under the General Scoring Guidelines.

	ap10_computer_science_a_q1_web_commentary_final.pdf
	Question 1
	Question 1 (continued)

