AP® Computer Science A

2013 Scoring Guidelines
Revised April 2014

The College Board

The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity.
Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is
made up of over 6,000 of the world’s leading educational institutions and is dedicated to promoting excellence and equity in
education. Each year, the College Board helps more than seven million students prepare for a successful transition to college
through programs and services in college readiness and college success — including the SAT® and the Advanced Placement
Program®. The organization also serves the education community through research and advocacy on behalf of students,
educators, and schools. The College Board is committed to the principles of excellence and equity, and that commitment is
embodied in all of its programs, services, activities, and concerns.

© 2013 The College Board. College Board, Advanced Placement Program, AP, SAT and the acorn logo are registered trademarks
of the College Board. All other products and services may be trademarks of their respective owners.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Cg}ollegeBoard

AP® COMPUTER SCIENCE A
2013 GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, ¢) may have a negative point total. A given penalty can be assessed only once for a question, even
if it occurs multiple times or in multiple parts of that question.

1-Point Penalty

(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)

%) Local variables used but none declared

(
(y) Destruction of persistent data (e.g., changing value referenced by parameter)
(

z) Void method or constructor that returns a value

No Penalty
o Extraneous code with no side effect (e.g., precondition check, no-op)
o Spelling/case discrepancies where there is no ambiguity™*
o Local variable not declared provided other variables are declared in some part
o private or public qualifier on alocal variable
o Missing public qualifier on class or constructor header
o Keyword used as an identifier
o Common mathematical symbols used for operators (x ® + < > <> =)
o [] wvs. () vs. <>
o = instead of == and vice versa
o Array/collection access confusion ([] get)
o length/size confusion for array, String, List, or ArrayList, with or without ()
o Extraneous [] when referencing entire array
o [i,]] insteadof [1][]]
o Extraneous size in array declaration, e.g.,, int[size] nums = new int[size];
o Missing ; provided majority are present and indentation clearly conveys intent
o Missing { } where indentation clearly conveys intent and { } are used elsewhere
o Missing () on parameter-less method or constructor invocations
o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As
a counterexample, note that if the code declares “Bug bug;”, then uses “Bug.move ()" instead

of “bug.move ()", the context does not allow for the reader to assume the object instead of the class.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

Question 1: SongList

|Part (a) getDownloadInfo 4 points |
Intent: Search download list for requested title and return matching DownloadInfo object if
found.
+1 Accesses all necessary entries in downloadList (no bounds errors)
+3 Identifies and returns matching entry in downloadList, if it exists
+1 Calls getTitle on DownloadInfo objectfrom downloadList
+1 Checks for equality between title from list object and title parameter
(must use String equality check)
+1 Returns reference to matching object if present; null if not
(point not awarded for early return)
|Part (b) updateDownloads 5 points

Intent: Update downloadList with information from list of titles
+1 Accesses all entries in titles (no bounds errorfor titles)

+1 Calls getDownloadInfo (title) todetermine whether title from titles list
exists in downloadList

+1 Increments the count in matching DownloadInfo object if title isin downloadList

+1 Constructs new DownloadInfo object (with correct information) if title is not in
downloadList (point not awarded if incremented at time of construction)

+1 Adds constructed object to end of downloadList iftitleisnotin downloadList
(point not awarded if added more than once)

|Question-Specific Penalties

-1 (g) Uses getlLength/getSize for Arraylist size
-2 (v) Consistently uses incorrect array name instead of downloadList/titles
-1 (z) Attempts to return a value from updateDownloads

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 CANONICAL SOLUTIONS

Question 1: SongList

Part (a):

public DownloadInfo getDownloadInfo (String title) {
for (DownloadInfo info : downloadList) {
if (info.getTitle () .equals(title)) {
return info;
}
}

return null;

Part (b):

public void updateDownloads (List<String> titles) {
for (String title : titles) {
DownloadInfo foundInfo = getDownloadInfo(title);
if (foundInfo == null) {
downloadList.add (new DownloadInfo(title));
}
else {
foundInfo.incrementTimesDownloaded () ;

}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

Question 2: TokenPass

|Part (a) TokenPass constructor 4 points

Intent: Create TokenPass object and correctly initialize game state
+1 Creates instance variable board as int array of size playerCount

+1 Computes a random number between 1 and 10, inclusive, and
a random number between O and playerCount-1, inclusive

+1 Initializes all entries in board with computed random value (no bounds errors)
+1 Initializes instance variable currentPlayer tocomputed random value
|Part (b) distributeCurrentPlayerTokens 5 points

Intent: Distribute all tokens from currentPlayer position to subsequent positions in array

+1 Uses initial value of board|[currentPlayer] to control distribution of tokens
+1 Increases at least one board entry in the context of a loop

+1 Starts distribution of tokens at correct board entry

+1 Distributes next token (if any remain) to position 0 after distributing to

highest position in board

+1 On exit: token count at each position in board is correct

|Question-Specific Penalties

-2 (v) Consistently uses incorrect array name instead of board
-1 (y) Destruction of persistent data (currentPlayer)
-1 (z) Attempts to return a value from distributeCurrentPlayerTokens

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 CANONICAL SOLUTIONS

Question 2: TokenPass

Part (a):

public TokenPass (int playerCount)
{
board = new int[playerCount];
for (int i = 0; i < playerCount; i++) {
board[i] =1 + (int) (10 * Math.random()) ;
}

currentPlayer = (int) (playerCount * Math.random()) ;

Part (b):

public void distributeCurrentPlayerTokens ()

{
int nextPlayer = currentPlayer;
int numToDistribute = board[currentPlayer];
board|[currentPlayer] = 0;

while (numToDistribute > 0) {
nextPlayer = (nextPlayer + 1) % board.length;
board[nextPlayer]++;
numToDistribute--;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

Question 3: JumpingCritter (GridWorld)

|Part (a) getEmptyLocations 5 points

Intent: Create and return ArrayList<Location> of all empty locations in grid
+12 Declares and constructs empty ArrayList<Location>

+12 Accesses all locations in grid (no bounds errors)

+2 Identifies empty location in grid in context of loop
+1 Creates new location in grid
+1 Determines if created location is empty
+1 Includes all and only identified empty locations in constructed arraylist exactly once
+1 Returns the constructed arraylist (code must have examined grid)
|Part (b) Class: JumpingCritter 4 points
Intent: Define extension to Critter class that jumps to randomly selected empty location in
its grid
+12 class JumpingCritter extends Critter

+1% Override getMoveLocations
+12 public ArrayList<Location> getMoveLocations ()
+2 GridWorldUtilities.getEmptyLocations (getGrid())
+12 Returns arraylist containing empty locations

+1 Handles null location case correctly in selectMoveLocation

+1 Handles random location case correctly (must override getMoveLocations)

|Question-Specific Penalties

-1 (s) Causes inappropriate state change in world (Grid, Actor, ...)

-1 (t) Overrides act

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 CANONICAL SOLUTIONS

Question 3: JumpingCritter (GridWorld)

Part (a):

public static ArraylList<Location> getEmptyLocations (Grid<Actor> grid)
{

ArrayList<Location> locs = new ArrayList<Location>();

for (int r = 0; r < grid.getNumRows (); r++) {
for (int ¢ = 0; ¢ < grid.getNumCols(); c++) {
Location locToCheck = new Location(r,c):;
if (grid.get (locToCheck) == null) {
locs.add (locToCheck) ;

}

return locs;

Part (b):

public class JumpingCritter extends Critter ({

public ArraylList<Location> getMovelocations () {
return GridWorldUtilities.getEmptyLocations (getGrid())

}

public Location selectMovelocation (ArrayList<Location> locs) {

if (locs.size () == 0){
return null;
} else {
Location newLoc = locs.get((int) (Math.random () *locs.size()));

return newloc;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

Question 4: SkyView

|Part (a) SkyView constructor 5 points |

Intent: Construct SkyView object from 1D array of scan data
+1 Constructs correctly-sized 2D array of doubles and assigns to instance variable view

+1 Initializes at least one element of view with value from element of scanned
(must be in context of loop)

+1 Places consecutive values from scanned into at least one row of view in original order
+1 Places consecutive values from scanned into atleast one row of view in reverse order
+1 On exit: all elements of view have correct values (no bounds errors on view

or scanned)

|Part (b) getAverage 4 points

Intent: Compute and return average of rectangular section of view, specified by parameters

+1 Declares and initializes a double accumulator

+1 Adds all and only necessary values from view to accumulator (no bounds errors)
+1 Computes average of specified rectangular section

+1 Returns the computed average (computation must involve view)

|Question-Specific Penalties

-2 (v) Consistently uses incorrect array name instead of view/scanned

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 CANONICAL SOLUTIONS

Question 4: SkyView

Part (a):

public SkyView (int numRows, int numCols, double[] scanned)
{

view = new double[numRows] [numCols];

int 1 = 0;

for (int row = 0;

if (row % 2 ==
for (int col
view[row] [cC

row < numRows; row++) {
0) {
= 0; col < numCols; col++) {
ol] = scanned[i];

1++;
}
}
else {
for (int col = numCols - 1; col >= 0; col--) {
view[row] [col] = scanned[i];
i++;
}
}
}
}
Part (b):
public double getAverage (int startRow, int endRow, int startCol,

int endCol)
{
double sum = 0.0;
int count = 0;
for (int row = startRow; row <= endRow; row++) {
for (int col = startCol; col <= endCol; col++){
sum += view[row] [col];
count++;
}
}

return sum / count;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

	ap13_computer_science_scoring_guideline_cover.pdf
	AP® Computer Science A
	2013 Scoring Guidelines

	ap13_computer_science_scoring_guideline_coverREVISED.pdf
	AP® Computer Science A
	2013 Scoring Guidelines

	ap13_computer_science_scoring_guideline_coverREVISED2.pdf
	AP® Computer Science A
	2013 Scoring Guidelines

	ap13_computer_science_scoring_guideline_coverREVISED (2).pdf
	AP® Computer Science A
	2013 Scoring Guidelines

