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AP® COMPUTER SCIENCE A
2013 GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, ¢) may have a negative point total. A given penalty can be assessed only once for a question, even
if it occurs multiple times or in multiple parts of that question.

1-Point Penalty

(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)

%) Local variables used but none declared

(
(y) Destruction of persistent data (e.g., changing value referenced by parameter)
(

z) Void method or constructor that returns a value

No Penalty
o Extraneous code with no side effect (e.g., precondition check, no-op)
o Spelling/case discrepancies where there is no ambiguity™*
o Local variable not declared provided other variables are declared in some part
o private or public qualifier on alocal variable
o Missing public qualifier on class or constructor header
o Keyword used as an identifier
o Common mathematical symbols used for operators (x ® + < > <> =)
o [] wvs. () vs. <>
o = instead of == and vice versa
o Array/collection access confusion ([] get)
o length/size confusion for array, String, List, or ArrayList, with or without ( )
o Extraneous [] when referencing entire array
o [i,]] insteadof [1][]]
o Extraneous size in array declaration, e.g.,, int[size] nums = new int[size];
o Missing ; provided majority are present and indentation clearly conveys intent
o Missing { } where indentation clearly conveys intent and { } are used elsewhere
o Missing ( ) on parameter-less method or constructor invocations
o Missing ( ) around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As
a counterexample, note that if the code declares “Bug bug;”, then uses “Bug.move ()" instead

of “bug.move ()", the context does not allow for the reader to assume the object instead of the class.
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Question 1: SongList

|Part (a) getDownloadInfo 4 points |
Intent: Search download list for requested title and return matching DownloadInfo object if
found.
+1 Accesses all necessary entries in downloadList (no bounds errors)
+3 Identifies and returns matching entry in downloadList, if it exists
+1 Calls getTitle on DownloadInfo objectfrom downloadList
+1 Checks for equality between title from list object and title parameter
(must use String equality check)
+1 Returns reference to matching object if present; null if not
(point not awarded for early return)
|Part (b) updateDownloads 5 points

Intent: Update downloadList with information from list of titles
+1 Accesses all entries in titles (no bounds errorfor titles)

+1 Calls getDownloadInfo (title) todetermine whether title from titles list
exists in downloadList

+1 Increments the count in matching DownloadInfo object if title isin downloadList

+1 Constructs new DownloadInfo object (with correct information) if title is not in
downloadList (point not awarded if incremented at time of construction)

+1 Adds constructed object to end of downloadList iftitleisnotin downloadList
(point not awarded if added more than once)

|Question-Specific Penalties

-1 (g) Uses getlLength/getSize for Arraylist size
-2 (v) Consistently uses incorrect array name instead of downloadList/titles
-1 (z) Attempts to return a value from updateDownloads
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2013 CANONICAL SOLUTIONS

Question 1: SongList

Part (a):

public DownloadInfo getDownloadInfo (String title) {
for (DownloadInfo info : downloadList) {
if (info.getTitle () .equals(title)) {
return info;
}
}

return null;

Part (b):

public void updateDownloads (List<String> titles) {
for (String title : titles) {
DownloadInfo foundInfo = getDownloadInfo(title);
if (foundInfo == null) {
downloadList.add (new DownloadInfo(title));
}
else {
foundInfo.incrementTimesDownloaded () ;

}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.
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Question 2: TokenPass

|Part (a) TokenPass constructor 4 points

Intent: Create TokenPass object and correctly initialize game state
+1 Creates instance variable board as int array of size playerCount

+1 Computes a random number between 1 and 10, inclusive, and
a random number between O and playerCount-1, inclusive

+1 Initializes all entries in board with computed random value (no bounds errors)
+1 Initializes instance variable currentPlayer tocomputed random value
|Part (b) distributeCurrentPlayerTokens 5 points

Intent: Distribute all tokens from currentPlayer position to subsequent positions in array

+1 Uses initial value of board|[currentPlayer] to control distribution of tokens
+1 Increases at least one board entry in the context of a loop

+1 Starts distribution of tokens at correct board entry

+1 Distributes next token (if any remain) to position 0 after distributing to

highest position in board

+1 On exit: token count at each position in board is correct

|Question-Specific Penalties

-2 (v) Consistently uses incorrect array name instead of board
-1 (y) Destruction of persistent data (currentPlayer)
-1 (z) Attempts to return a value from distributeCurrentPlayerTokens
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Question 2: TokenPass

Part (a):

public TokenPass (int playerCount)
{
board = new int[playerCount];
for (int i = 0; i < playerCount; i++) {
board[i] =1 + (int) (10 * Math.random()) ;
}

currentPlayer = (int) (playerCount * Math.random()) ;

Part (b):

public void distributeCurrentPlayerTokens ()

{
int nextPlayer = currentPlayer;
int numToDistribute = board[currentPlayer];
board|[currentPlayer] = 0;

while (numToDistribute > 0) {
nextPlayer = (nextPlayer + 1) % board.length;
board[nextPlayer]++;
numToDistribute--;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.
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Question 3: JumpingCritter (GridWorld)

|Part (a) getEmptyLocations 5 points

Intent: Create and return ArrayList<Location> of all empty locations in grid
+12 Declares and constructs empty ArrayList<Location>

+12 Accesses all locations in grid (no bounds errors)

+2 Identifies empty location in grid in context of loop
+1 Creates new location in grid
+1 Determines if created location is empty
+1 Includes all and only identified empty locations in constructed arraylist exactly once
+1 Returns the constructed arraylist (code must have examined grid)
|Part (b) Class: JumpingCritter 4 points
Intent: Define extension to Critter class that jumps to randomly selected empty location in
its grid
+12 class JumpingCritter extends Critter

+1% Override getMoveLocations
+12 public ArrayList<Location> getMoveLocations ()
+2 GridWorldUtilities.getEmptyLocations (getGrid())
+12 Returns arraylist containing empty locations

+1 Handles null location case correctly in selectMoveLocation

+1 Handles random location case correctly (must override getMoveLocations)

|Question-Specific Penalties

-1 (s) Causes inappropriate state change in world (Grid, Actor, ...)

-1 (t) Overrides act
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Question 3: JumpingCritter (GridWorld)

Part (a):

public static ArraylList<Location> getEmptyLocations (Grid<Actor> grid)
{

ArrayList<Location> locs = new ArrayList<Location>();

for (int r = 0; r < grid.getNumRows (); r++) {
for (int ¢ = 0; ¢ < grid.getNumCols(); c++) {
Location locToCheck = new Location(r,c):;
if (grid.get (locToCheck) == null) {
locs.add (locToCheck) ;

}

return locs;

Part (b):

public class JumpingCritter extends Critter ({

public ArraylList<Location> getMovelocations () {
return GridWorldUtilities.getEmptyLocations (getGrid())

}

public Location selectMovelocation (ArrayList<Location> locs) {

if (locs.size () == 0){
return null;
} else {
Location newLoc = locs.get((int) (Math.random () *locs.size()));

return newloc;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.
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Question 4: SkyView

|Part (a) SkyView constructor 5 points |

Intent: Construct SkyView object from 1D array of scan data
+1 Constructs correctly-sized 2D array of doubles and assigns to instance variable view

+1 Initializes at least one element of view with value from element of scanned
(must be in context of loop)

+1 Places consecutive values from scanned into at least one row of view in original order
+1 Places consecutive values from scanned into atleast one row of view in reverse order
+1 On exit: all elements of view have correct values (no bounds errors on view

or scanned)

|Part (b) getAverage 4 points

Intent: Compute and return average of rectangular section of view, specified by parameters

+1 Declares and initializes a double accumulator

+1 Adds all and only necessary values from view to accumulator (no bounds errors)
+1 Computes average of specified rectangular section

+1 Returns the computed average (computation must involve view)

|Question-Specific Penalties

-2 (v) Consistently uses incorrect array name instead of view/scanned
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Question 4: SkyView

Part (a):

public SkyView (int numRows, int numCols, double[] scanned)
{

view = new double[numRows] [numCols];

int 1 = 0;

for (int row = 0;

if (row % 2 ==
for (int col
view[row] [cC

row < numRows; row++) {
0) {
= 0; col < numCols; col++) {
ol] = scanned[i];

1++;
}
}
else {
for (int col = numCols - 1; col >= 0; col--) {
view[row] [col] = scanned[i];
i++;
}
}
}
}
Part (b):
public double getAverage (int startRow, int endRow, int startCol,

int endCol)
{
double sum = 0.0;
int count = 0;
for (int row = startRow; row <= endRow; row++) {
for (int col = startCol; col <= endCol; col++){
sum += view[row] [col];
count++;
}
}

return sum / count;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.
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