
AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: JumpingCritter (GridWorld)

Part (a) getEmptyLocations 5 points

Intent: Create and return ArrayList<Location> of all empty locations in grid

 +½ Declares and constructs empty ArrayList<Location>

 +½ Accesses all locations in grid (no bounds errors)

 +2 Identifies empty location in grid in context of loop
 +1 Creates new location in grid

 +1 Determines if created location is empty

 +1 Includes all and only identified empty locations in constructed arraylist exactly once

 +1 Returns the constructed arraylist (code must have examined grid)

Part (b) Class: JumpingCritter 4 points

Intent: Define extension to Critter class that jumps to randomly selected empty location in
its grid

 +½ class JumpingCritter extends Critter

 +1½ Override getMoveLocations
 +½ public ArrayList<Location> getMoveLocations()
 +½ GridWorldUtilities.getEmptyLocations(getGrid())
 +½ Returns arraylist containing empty locations

 +1 Handles null location case correctly in selectMoveLocation

 +1 Handles random location case correctly (must override getMoveLocations)

Question-Specific Penalties

 -1 (s) Causes inappropriate state change in world (Grid, Actor, …)

 -1 (t) Overrides act

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2013 SCORING COMMENTARY

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3

Overview

This question involved reasoning in the context of the GridWorld case study. Part (a) required writing a
static method in a utilities class, traversing a two-dimensional data structure included in a Grid,
working with a list (instantiating an ArrayList of Location objects, adding elements and testing for
empty), and returning values from a method. Part (b) required the writing of a Critter subclass,
understanding inheritance and polymorphism, overriding selected methods of the Critter class, and
paying attention to specific post-conditions.

Students commonly approached part (a) in either of two ways.

(1) Start with an empty ArrayList and add empty locations.
(2) Start with an ArrayList of all locations and remove occupied locations.

In part (b), students needed a good understanding of GridWorld to determine which two methods
(getMoveLocations and selectMoveLocation) to override. Overriding makeMove instead of
selectMoveLocation violates makeMove's post-condition that getLocation() == loc in the
case loc is null.

Sample: 3A
Score: 8

In part (a), the ArrayList is successfully declared and constructed as an ArrayList of Location
objects. All the locations in grid are accessed using two nested loops, correctly using
grid.getNumRows() and grid.getNumCols() as the loop bounds. A Location object within
the grid is correctly created using the new operator. The empty location test is done correctly by
accessing the object at that location and comparing the object (using ==) to null. If the test
succeeds, the location is then correctly added to the ArrayList. The constructed ArrayList is
returned correctly after the two loops have examined the entire grid. Part (a) earned 5 points.

In part (b), the class header class JumpingCritter extends Critter is correct. The method
header for getMoveLocations is correct. In getMoveLocations, the call to method
getEmptyLocations is correctly qualified with the class name GridWorldUtilities and uses
the correct grid object as the argument. The resulting ArrayList is returned. The makeMove method
is overridden. In the case where loc is null, the result of calling removeSelfFromGrid()
violates makeMove's post-condition that getLocation() == loc, so the point for the null case
is lost. The random case is correctly handled through the inherited selectMoveLocation method to
identify a location and the call to moveTo in the overridden makeMove. Part (b) earned 3 points.

Sample: 3B
Score: 6

In part (a), the ArrayList is successfully declared and constructed as an ArrayList of Location
objects. All the locations in grid are accessed using two nested loops, correctly using
grid.getNumRows() and grid.getNumCols() as the loop bounds. A Location object within
the grid is correctly created using the new operator. The object at that location is correctly accessed
[grid.get(location)]; however, the empty location test is incorrect because the comparison test
“instance of null” is incorrect, so the point for the empty test is lost.

AP® COMPUTER SCIENCE A
2013 SCORING COMMENTARY

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3 (continued)

The location is correctly added to the ArrayList. The constructed ArrayList is returned correctly
after the two loops have examined the entire grid. Part (a) earned 4 points.

In part (b), the class header class JumpingCritter extends Critter is correct. The method
header for getMoveLocations is correct. In getMoveLocations, the call to method
getEmptyLocations is correctly qualified with the class name GridWorldUtilities and uses
the correct grid object as the argument. The resulting ArrayList is returned. The
selectMoveLocation method is overridden. In the case where loc is null, the result of calling
removeSelfFromGrid() violates selectMoveLocation's post-condition that “the state of all
actors is unchanged.” The post-condition that “The returned location is an element of locs, the critter's
current location, or null” is also violated, so the point for the null case is lost. Although there is a
correct call to super.selectMoveLocation, the resulting location is not returned, so the random
case is not handled correctly, thereby losing 1 point for the random case. Part (b) earned 2 points.

Sample: 3C
Score: 2

In part (a), an ArrayList of Location objects is not declared and constructed (-½ point). The loop
boundaries are incorrect and the increments (row+2 and col+2) are also incorrect so the solution
loses the access point (-½ point). A new Location is not created (-1 point). The test for an empty
location is incorrect (-1 point). Empty locations are not accumulated in the ArrayList (the attempt to
declare the ArrayList is done inside the loop) so the solution does not receive credit for including
identified empty locations (-1 point). The premature return from inside the loop loses the return point (-1
point).Part (a) earned 0 points.

In part (b), the class header class JumpingCritter extends Critter is correct. The method
header for getMoveLocations is also correct. However, in getMoveLocations, the method
getEmptyLocations is called incorrectly, because it is not qualified with the class name
GridWorldUtilities and the argument in the method call is not the current grid (-½ point). The
resulting ArrayList is not returned (-½ point). The makeMove method is overridden. In the case
where loc is null, removeSelfFromGrid() violates makeMove's post-condition that
getLocation() == loc, so the point for the null case is lost. The random case is correctly
handled in the inherited selectMoveLocation method and the call to moveTo in makeMove. Part
(b) earned 2 points.

	ap13_computer science a_apc_commentary_q3_FINAL.pdf
	Question 3
	Question 3 (continued)

