
AP® COMPUTER SCIENCE A
2016 GENERAL SCORING GUIDELINES

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even if
it occurs multiple times or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

v) Array/collection access confusion ([] get)

w) Extraneous code that causes side-effect (e.g., writing to output, failure to compile)

x) Local variables used but none declared

y) Destruction of persistent data (e.g., changing value referenced by parameter)

z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side-effect (e.g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList; with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration, e.g., int[size] nums = new int[size];

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context. For example, “ArayList” instead of “ArrayList”. As a
counter example, note that if the code declares “Bug bug;”, then uses “Bug.move()” instead of
“bug.move()”, the context does not allow for the reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2016 SCORING GUIDELINES

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Crossword

Part (a) toBeLabeled 3 points

Intent: Return a boolean value indicating whether a crossword grid square should be labeled
with a positive number

 +1 Checks blackSquares[r][c]

 +1 Checks for black square/border above and black square/border to the left (no bounds

errors)

+1 Returns true if square should be labeled with positive number; returns false
otherwise

Part (b) Crossword constructor 6 points

Intent: Initialize each square in a crossword puzzle grid to have a color (boolean) and an integer label

 +1 puzzle = new Square[blackSquares.length][blackSquares[0].length];

(or equivalent)

 +1 Accesses all locations in puzzle (no bounds errors)

 +1 Calls toBeLabeled with appropriate parameters

 +1 Creates and assigns new Square to location in puzzle

+1 Numbers identified squares consecutively, in row-major order, starting at 1

+1 On exit: All squares in puzzle have correct color and number (minor errors covered in
previous points ok)

Question-Specific Penalties

 -2 (p) Consistently uses incorrect name instead of puzzle

 -1 (q) Uses array[].length instead of array[num].length

AP® COMPUTER SCIENCE A
2016 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2016 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 3: Crossword

Part (a):

private boolean toBeLabeled(int r, int c, boolean[][] blackSquares)
{
 return (!(blackSquares[r][c]) &&
 (r == 0 || c == 0 || blackSquares[r - 1][c] ||
 blackSquares[r][c - 1]));
}

Part (b):

public Crossword(boolean[][] blackSquares)
{
 puzzle = new Square[blackSquares.length][blackSquares[0].length];
 int num = 1;

 for (int r = 0; r < blackSquares.length; r++)
 {
 for (int c = 0; c < blackSquares[0].length; c++)
 {

if (blackSquares[r][c])
{
 puzzle[r][c] = new Square(true, 0);
}
else
{
 if (toBeLabeled(r, c, blackSquares))
 {
 puzzle[r][c] = new Square(false, num);

 num++;
 }
 else
 {
 puzzle[r][c] = new Square(false, 0);
 }
 }
 }
 }
}

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2016 SCORING COMMENTARY

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3

Overview

This question used a two-dimensional (2-D) array of objects to represent a crossword puzzle.

In part (a) students were asked to write a boolean method that determines whether or not a specific
square in the puzzle should be numbered based on specified labeling rules. Students needed to demonstrate
an understanding of boolean data structures, writing and evaluating boolean expressions, and
returning correct boolean values. Students were also required to demonstrate an understanding of
bounds checking and indexing in a 2-D array. This logic needed to be implemented utilizing given method
parameters.

In part (b) students were asked to write a constructor that initializes the instance variable and explicitly calls
the method defined in part (a) to build a puzzle, square by square. Students were required to demonstrate an
understanding of object instantiation by initializing the class instance variable and a Square object using
appropriate parameter values. Students were required to demonstrate an understanding of 2-D array
processing by traversing a 2-D array in row-major order, accessing each position of the array without going
out of bounds. Students were also required to identify squares that needed to be consecutively numbered by
calling the previously defined toBeLabeled method using appropriate parameters.

Sample: 3A
Score: 8

In part (a) the student checks the square at row r, column c and correctly implements the crossword
labeling rules by checking for a white square in the first row or first column, or for a white square with a black
square to its left or above. No checks cause a bounds error. The logic correctly returns true if the square
should be numbered and false otherwise. Part (a) earned 3 points.

In part (b) the student correctly instantiates the instance variable puzzle with the same dimensions as the
parameter blackSquares. All locations in puzzle are accessed without bounds errors and assigned a
Square object, but the assignment is missing the new operator, so the "assign new Square" point was
not earned. Labeled squares, identified by a correct call to the toBeLabeled method, are numbered
consecutively in row-major order starting at 1. Squares that are not labeled are numbered with 0. Part (b)
earned 5 points.

Sample: 3B
Score: 5

In part (a) the student fails to check the square at row r, column c, so the first rubric point was not
earned. The square above and the square to the left are checked with no bounds error, so the second rubric
point was earned. Because the logic does not include checking the color of the square to be labeled, the third
rubric point was not earned. Part (a) earned 1 point.

In part (b) the student correctly instantiates the instance variable puzzle with the same dimensions as the
parameter blackSquares. All locations in puzzle are accessed without bounds errors and assigned a
correctly constructed Square object. The student fails to call the toBeLabeled method, so the "calls
toBeLabelled" point was not earned. Squares are numbered consecutively in row-major order starting at
1. Squares that are not labeled are numbered with 0. Because the squares to be labeled are not correctly
identified (and because all created squares are black), the final point was not earned. Part (b) earned 4 points.

AP® COMPUTER SCIENCE A
2016 SCORING COMMENTARY

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3 (continued)

Sample: 3C
Score: 3

In part (a) the student checks the square at row r, column c and correctly implements the crossword
labeling rules by checking for a white square in the first row or first column, or for a white square with a black
square to its left or above. No checks cause a bounds error. The logic used for the return value is incorrect. In
order to be labeled, inner white squares will require a black square both above and to the left, but because
only one adjacent black square is required, the student did not earn the third rubric point. Part (a) earned
2 points.

In part (b) the student incorrectly includes Square[][] to declare a local object rather than instantiating
the instance variable, puzzle, so the "initialize puzzle" point was not earned. All locations in puzzle
are accessed without bounds errors and assigned a Square object, but the constructor call to Square
has an unknown variable as its first parameter, so the "assign new Square" point was not earned. Labeled
squares, identified by a call to the toBeLabeled method, are numbered with either 1 or 0, so the "number
identified squares" point was not earned. The call to the toBeLabeled method uses a boolean value
as the third parameter rather than a 2-D boolean array value, so the "calls toBeLabelled" point was
not earned. Unlabeled white squares are not numbered with 0, so the final point was not earned. Part (b)
earned 1 point.

	ap16_compsci_general_scoring_guidelines_final
	ap16_compsci_q3_scoring guidelines_final
	Question 3: Crossword

	ap16_compsci_canonical__q3_final
	q3_Pages from Computer Science A_APC_Final-3
	ap16_compsci_apc_commentary_q3
	Question 3
	Overview
	Sample: 3A
	Score: 8
	Sample: 3B
	Score: 5

	Question 3 (continued)
	Sample: 3C
	Score: 3

