2020 3月 SAT (美國/北美版) 考題回顧:所有 5 篇閱讀文章!

Also in: 简中 (简中)

過去這個週末學生考了 2020 年 3 月的 SAT 考試。如果這是你最後一次考 SAT,恭喜你完成了一個艱難的任務!

這裡,我們整理了 2020 年 3 月 SAT 考試當中的 5 篇閱讀文章,幫助學生準備未來的考試。


這些閱讀文章可以如何的幫助你?

1. 這些文章可以讓你知道你的英文程度以及準備考試的程度

首先,讀這些文章。你覺得他們讀起來很簡單還是很難?裡面有沒有很多生字,尤其是那些會影響你理解整篇文章的生字?如果有的話,雖然你可能是在美國讀書或讀國際學校、也知道 “如何讀跟寫英文”,但你還沒有足夠的生字基礎讓你 “達到下一個階段” (也就是大學的階段)。查一下這一些字,然後把它們背起來。這些生字不見得會在下一個 SAT 考試中出現,但是透過真正的 SAT 閱讀文章去認識及學習這些生字可以大大的減低考試中出現不會的生字的機率。

2. 這些文章會告訴你平時應該要讀哪些文章幫你準備閱讀考試

在我們的 Ivy-Way Reading Workbook(Ivy-Way 閱讀技巧書)的第一章節裡,我們教學生在閱讀文章之前要先讀文章最上面的開頭介紹。雖然你的 SAT 考試不會剛好考這幾篇文章,但你還是可以透過這些文章找到它們的來源,然後從來源閱讀更多相關的文章。舉例來說,如果你看第二篇文章 “The Problem with Fair Trade Coffee”,你會看到文章是來自 Stanford Social Innovation Review。閱讀更多來自 Stanford Social Innovation Review 的文章會幫助你習慣閱讀這種風格的文章。

3. 這些文章會幫助你發掘閱讀單元的技巧(如果閱讀單元對你來說不是特別簡單的話)

如果你覺得閱讀單元很簡單,或是你在做完之後還有剩幾分鐘可以檢查,那麼這個技巧可能就對你來說沒有特別大的幫助。但是,如果你覺得閱讀很難,或者你常常不夠時間做題,一個很好的技巧是先理解那一種的文章對你來說比較難,然後最後做這一篇文章。SAT 的閱讀文章包含這五種類型:

  • 文學 (literature):1 篇經典或現代的文學文章(通常來自美國)
  • 歷史 (History):1 篇跟美國獨立/創立相關的文章,或者一篇受到美國獨立 / 創立影響的國際文章(像是美國憲法或者馬丁路德金恩 (Martin Luther King Jr.) 的演說)
  • 人文 (Humanities):1 篇經濟、心理學、社會學、或社會科學的文章
  • 科學 (Sciences):1-2 篇地理、生物、化學、或物理的文章
  • 雙篇文 (Dual-Passages):0-1 篇含有兩篇同主題的文章

舉例來說,假設你覺得跟美國獨立相關的文章是你在做連續的時候覺得最難的種類,那你在考試的時候可以考慮使用的技巧之一是把這篇文章留到最後再做。這樣一來,如果你在考試到最後時間不夠了,你還是可以從其他比較簡單文章中盡量拿分。


所有 2020 年 3 月 (北美) SAT 考試閱讀文章

PASSAGE 1

This passage is adapted from Helen Oyeyemi, The Icarus Girl. ©2005 by Helen Oyeyemi. After a long journey from her home in England, eight-year-old Jessamy is meeting her mother’s family in Nigeria for the first time.

There they all stood, an uncertain circle, and then her grandfather came forward, greeted her mother, shook hands with her father. Although he seemed mellower and smaller than the picture that her mother had painted for her over the years, Jess had a sudden and irrational fear that he might start shouting at her.

He looked at her, put his hands on his hips in mock consternation, and her cousins and her mother laughed. Her father, standing slightly outside the circle, smiled encouragingly at her. Her grandfather held out a hand. His hands were big and square, spadelike, the palms deeply etched and callused. She took a step towards him, smiling a wobbly, nervous smile that she could not feel on her face.

She did not know what was expected of her.

She had nearly reached him when suddenly, on an outward gust of air, he half said, half announced a name.

“Wuraola.”

Who?

She froze, not knowing what to say or do.

Of course, she knew that Wuraola was her Yorubal name, the name that her grandfather had asked in a letter for her to be called when her mother had held her Nigerian naming ceremony. Wuraola means gold.

She knew all this …

But nobody had ever called her Wuraola, not even her mother, whom she could now see from the corner of her eye making anxious, silent gestures for her to go to her grandfather.

Here, in this stone-walled corridor where the sunlight came in through enormous, stiff mosquito screens over every window and her clothes clung to her like another skin, Wuraola sounded like another person. Not her at all.

Should she answer to this name, and by doing so steal the identity of someone who belonged here?

Should she … become Wuraola?

But how?

She could not make herself move forward, so she stayed where she was, avoided his touch, looked up into her grandfather’s face, smiled and said quietly, but firmly, in her most polite voice “Hello, Grandfather.”

After they had taken baths and Jess had been made to eat a little, her mother disappeared with her youngest sister, Aunty Biola, and her father befriended Uncle Kunle, who was clearly as newspaper-minded as he was, and wanted to talk about politics. Swiftly dropping a kiss onto her forehead, her father released her into her grandfather’s clutches before mounting the stairs that led up to the roof balcony of the house.

So her grandfather did have a face. It was a broad, lined face; the smile and frown lines ran deep into his skin, his eyes made smaller by the loosened flesh around them. He had the same wide, strong jawline with the determined set as her mother, and the same prominent cheekbones, although Jess could see that his were made angular more through the emaciation of age than anything else. He was quite short and moved about very quickly.

As Jess sat in the parlor, keeping very still so that she wouldn’t take up much space on the brown-and-white sofa, she allowed herself to stare openly and seriously at her grandfather, and he did the same. She felt as if she were a little piece of him that had crumbled off maybe, which he was examining for flaws and broken bits before deciding whether it was worth taking it to be reattached. It was impossible to tell what he thought of her.

She sat at a right angle from him, breathing out silence. He sat very upright (like her, she noted, with surprise), his hands on his knees, the crisp lines of his white shirt almost molding him, fixing him still in her sight. They were both waiting, supposedly for her Aunty Funke to bring them some soft drinks (her grandfather had called them “minerals”), but really Jessamy sensed that they were waiting ee if they would like each other or not.

PASSAGE 2

This passage is adapted from Jennifer M. Groh, Making Space: How the Brain Knows Where Things Are. ©2014 by Jennifer M. Groh.

The implication of the overlap between areas of the brain responsible for cognition and areas responsible for sensory and motor processing is that perhaps the operations of cognition are implemented at least in part via sensory and motor structures. That is, perhaps “thinking” also involves activating some subset of sensory and motor pathways of the brain. For example, when you mentally picture sitting on the couch in your living room, that thought might be implemented by partially activating the visual, tactile, auditory, olfactory, and motor responses that would have occurred if you were actually there. The theory that thought might involve simulating the activity patterns in our sensory and motor areas of the brain is called grounded or embodied cognition.

Some of the evidence in favor of this view comes from behavioral experiments that show that how you respond to something depends on otherwise irrelevant features of the sensory stimulus. And of particular interest here, these seemingly irrelevant features often involve space. In one classic study, Mike Tucker and Rob Ellis at the University of Plymouth asked subjects to judge whether items were upside down or right side up. The stimuli consisted of photographs of common household objects like frying pans or spatulas. Subjects were to indicate their choice by pressing a designated button, one button for upright and the other for upside down. One button was placed near the subject’s left hand and the other near the right hand—a detail we wouldn’t normally consider to be important but that was essential for what Tucker and Ellis were really getting at.

Secretly, Tucker and Ellis were not particularly interested in the upright/inverted choices, but whether the subjects would respond faster when they had to press the button with the hand on the same side as the handle of the object in the photograph. All the objects had handles and were photographed in multiple orientations, upright with the handle on either the left or right, and inverted with the handle on either the left or right. Tucker and Ellis found that when the handle on the frying pan was on the left, responses involving the left hand were indeed faster than those involving the right. Subjects also made fewer errors when the correct choice involved a match between the hand and the handle. When the objects were mirror reversed, the response pattern reversed as well, indicating that it was not simply a matter of being faster or more accurate with one hand than the other.

Another classic illustration of a seemingly unnecessary connection between space and cognition comes from mental rotation experiments. In one early study, Roger Shepard and Jacqueline Metzler presented subjects with drawings of blocks of various shapes (think Tetris but in three dimensions) and asked them to judge whether two pictures involved the same shape from a different viewpoint or a different shape altogether. They found that how long it took the subjects to make the judgment varied proportionally with the amount of rotation that would have been needed to bring the two objects into alignment, had they been real.

Both of these experiments, although strictly behavioral, suggest that mental reasoning can show signatures of real-world spatial constraints. In the frying-pan experiment, there is no reason for the side of the handle to affect responses—subjects must merely indicate whether the frying pan is upright or not—but it does. In the case of the mental rotation, there is no physical object to be actually turned, and yet the amount of time required to perform the task varies with how far such an object would have needed to be turned if it did exist.

Passage 3

This passage is adapted from Emily Monosson, Evolution in a Toxic World: How Life Responds to Chemical Threats. 02012 by Emily Monosson. UVB radiation can damage DNA; DNA photolyase is an enzyme that can repair DNA damage.

Andrew Blaustein, an ecologist at the University of Oregon, has studied frogs for decades, and for the past ten years he has turned his attention to the role of UV radiation in population declines. Like many ectotherms (animals formerly known as cold-blooded), some frog species lay their eggs in sunlit ponds or puddles, expressly relying on the sun’s energy to speed along egg hatching, larval development, and metamorphosis before their ephemeral pond dries. Much like photosynthesis or vitamin D production, it’s a trade-off—in the frog’s case, faster development in a higher-risk environment. Of course, like most creatures living under the sun, amphibians are well defended against UVB radiation. In addition to behavioral changes, like burrowing in mud or laying eggs in logs or under rocks, and the production of natural sunscreens, amphibians have redundant systems for DNA repair, including DNA photolyase.

Interested in the level of protection afforded by DNA photolyase, and the potential impacts of increased UVB exposures on frog populations, Blaustein and coauthor Lisa Belden compared the life history habits of several amphibian species with DNA photolyase activity in their eggs. Their study reveals strong positive correlations between UVB-resistant frog species (a species, for example, whose eggs are normally most exposed to sunlight because they are laid in sunny shallow ponds) and increased photolyase activity, in comparison to species whose eggs tend to be protected from direct sunlight. In other words, frog species that lay their eggs in sun-drenched environments are better able to repair DNA damage caused by UVB. Not only that, but subsequent field studies confirmed the detrimental effects of naturally occurring levels of UVB to developing eggs of some frog species, while those with the highest concentration of photolyase, the Pacific tree frogs, were most resistant. Beyond killing embryos, write Blaustein and Belden, UVB exposure may also cause sublethal and potential subtle (and therefore more difficult to measure) effects on larval growth and development. Their findings raise an intriguing question. Are less-resistant species more susceptible to DNA damage caused by increased UVB?

The question was answered in part by researchers working with a single species of frogs inhabiting different altitudes of the French Alps. Frog populations adapted to life at higher altitudes, and therefore naturally higher UVB exposures, showed less DNA damage than did their lower-altitude brethren when exposed to UVB intensities typical of high altitude. Identifying the genetic mechanism of this adaption—rapid evolution, increased protein production, or both—will require further study. Although DNA photolyase concentrations were not measured, the authors report an interesting twist that suggests increased photolyase activity in high-altitude tadpoles. Interested in other ways frogs might experience DNA damage, they studied the effects of benzo(a)pyrene (BaP), a well-characterized carcinogen present in cigarette smoke, coal tar, oil, and myriad other combustion products. BaP is both an ancient toxicant and a major industrial pollutant. Activated BaP binds with DNA, causing a kink in the DNA helix, just like UVB. A specialty of DNA photolyase is kinky DNA. It turns out that high-altitude frogs had less BaP-induced DNA damage compared with their lowland cousins. Added protection by DNA photolyase? Maybe. Until enzyme concentrations are confirmed, any added protection cannot yet be attributed to increased DNA photolyase.

Passage 4

This passage is from Mercy Otis Warren, History of the Rise, Progress and Termination of the American Revolution, vol. 2. Originally published in 1805. In this passage, Warren addresses the time period directly following the American Revolution.

But though the connexion was now dissolved, and the gordian knot of union between Great Britain and America cut in sunder; though the independence of the United States was, by the treaty, clearly established on the broad basis of liberty; yet the Americans felt themselves in such a state of infancy, that as a child just learning to walk, they were afraid of their own movements. Their debts were unpaid, their governments unsettled, and the people out of breath by their long struggle for the freedom and independence of their country. They were become poor from the loss of trade, the neglect of their usual occupations, and the drains from every quarter for the support of a long and expensive war.

From the versatility of human affairs, and the encroaching spirit of man, it was yet uncertain when and how the states would be tranquillized, and the union consolidated, under wise, energetic, and free modes of government; or whether such, if established, would be administered agreeable to laws founded on the beautiful theory of republicanism, depictured in the closets of philosophers, and idolized in the imagination of most of the inhabitants of America.

It is indeed true, that from a general attention to early education, the people of the United States were better informed in many branches of literature, than the common classes of men in most other countries. Yet many of them had but a superficial knowledge of mankind; they were ignorant of the intrigues of courts, and though convinced of the necessity of government, did not fully understand its nature or origin; they had generally supposed there was little to do, but to shake off the yoke of foreign domination, and annihilate the name of king.

They were not generally sensible, that most established modes of strong government are usually the consequences of fraud or violence, against the systems of democratic theorists. They were not sensible, that from age to age the people are flattered, deceived, or threatened, until the hood-winked multitude set their own seals to a renunciation of their privileges, and with their own hands rivet the chains of servitude on their posterity. They were totally fearless of the intrigues or the ambition of their own countrymen, which might in time render fruitless the expense of their blood and their treasures. These they had freely lavished to secure their equality of condition, their easy modes of subsistence, and their exemption from public burdens beyond the necessary demands for the support of a free and equal government. But it was not long before they were awakened to new energies, by convulsions both at home and abroad.

New created exigencies, or more splendid modes of government that might hereafter be adopted, had not yet come within the reach of their calculations. Of these, few had yet formed any adequate ideas, and fewer indeed were sensible, that though the name of liberty delights the ear, and tickles the fond pride of man, it is a jewel much oftener the play-thing of his imagination, than a possession of real stability: it may be acquired to-day in all the triumph of independent feelings, but perhaps to-morrow the world may be convinced, that mankind know not how to make a proper use of the prize, generally bartered in a short time, as a useless bauble, to the first officious master that will take the burden from the mind, by laying another on the shoulders of ten-fold weight.

This is the usual course of human conduct, however painful the reflection may be to the patriot in retirement, and to the philosopher absorbed in theoretic disquisitions on human liberty, or the portion of natural and political freedom to which man has a claim. The game of deception is played over and over to mislead the judgment of men, and work on their enthusiasm, until by their own consent, hereditary crowns and distinctions are fixed, and some scion of royal descent is entailed upon them forever. Thus by habit they are ready to believe, that mankind in general are incapable of the enjoyment of that liberty which nature seems to prescribe, and that the mass of the people have not the capacity nor the right to choose their own masters.

Passage 5

Passage 1 is adapted from Cristina Eisenberg, The Carnivore Way: Coexisting with and Conserving North America’s Predators. 02014 by Cristina Eisenberg. Passage 2 is adapted from John R. Squires et al., “Missing Lynx and Trophic Cascades in Food Webs: A Reply to Ripple et al.” 2012 by The Wildlife Society. A trophic cascade occurs when the presence of a predator decreases the population of its prey, thereby increasing the numbers of organisms at the next-lower trophic level.

Passage 1

In the early 2000s, wolves began to drift down from Canada and across the border from Idaho into Washington State. This natural wolf recolonization ? inspired ecologists such as William Ripple and his colleagues to conduct an exercise in scientific thinking to consider potential impacts that an apex predator like the wolf would have on the intricate workings of the lynx-snowshoe hare food web. At the time, Washington had low hare and lynx populations and a high coyote population. Coyotes had recently expanded their range and abundance there. Wolves prey on coyotes. What if the wolf’s return to the P4cific Northwest could indirectly improve lynx conservation, via trophic cascade effects?

Ripple and colleagues hypothesized that two mechanisms would drive wolf-coyote-lynx-snowshoe hare trophic cascades. First, by killing coyotes, wolves would reverse the mesopredator release that had occurred when wolves had been extirpated from this region nearly a century earlier. When humans hunted wolves to extinction, they removed an important check on coyote numbers—creating a “release” on the numbers of this mid-sized predator. Coyote numbers increased, which put more pressure on lynx via competition for food resources such as snowshoe hares. Therefore, by reducing coyotes in this system, a returning wolf population could indirectly create ecological benefits for lynx. The researchers further hypothesized that because coyotes also prey on lynx, a reduction of coyote numbers by wolves would release predation pressure on lynx.

Second, in western North America, south of the US-Canada border, wolves prey primarily on elk and deer. When elk and deer numbers are high, these herbivores can suppress shrubs via heavy browsing. Ripple and colleagues hypothesized that the wolfs return would reduce elk and deer numbers and also

change their behavior, as has been found in places like Yellowstone by John Laundre and others. Elk and deer need to stay alert in order to survive in areas where wolves exist. This means keeping their heads up and spending less time standing in one spot with their heads down, as they typically do when there are no wolves in a system. Via this predation risk mechanism, wolves could indirectly reduce browsing pressure on shrubs, which would improve snowshoe hare habitat, thereby benefiting lynx.

Passage 2

Ripple et al. correctly state that wolves can affect coyotes, both behaviorally and ecologically, in the Greater Yellowstone Ecosystem (GYE), as shown by Berger and Gese, and that such regulation can have cascading effects. However, despite the well-publicized initial declines in coyote abundance in the GYE following wolf recovery, coyotes may now be adapting to wolves and coyote pack numbers may have rebounded. The trophic strength of wolf effects on coyotes may also differ geographically with variation in climate, primary productivity, carnivore and prey communities, and the degree of human persecution. The inverse relationship between wolves and coyotes in Yellowstone is not supported outside the two national parks (Yellowstone and Grand Teton) included in the analyses by Berger and Gese. In other systems where wolves, coyotes, and lynx coexist, research shows a positive relationship between wolves and coyotes, whereby coyotes benefit from scavenging on wolf-killed ungulate carcasses. The generally low mortality rates of radio-collared coyotes killed by wolves outside of Yellowstone in Northwest Montana is three times less than those killed by cougars. Thus, this quick review of the literature suggests that the strongest generality of Ripple et al.’s hypothesis that wolves have a direct negative effect on coyotes is, at best, inconsistent, both within the GYE and across wolf-coyote range in North America.

Buskirk et al. hypothesized that coyotes compete with lynx through both interference competition (direct killing or displacement) and indirect exploitative competition for shared food resources. Ripple et al. speculated that these interactions are, in part, responsible for the imperiled status of southern lynx. Unfortunately, evidence for interference competition is essentially limited to anecdotal observations. An observation of a single juvenile lynx killed by a coyote in the Yukon is not prima facie [at first sight] evidence for a trophic-level interaction. Further, in this northern population, more predation o mortality of radio-collared lynx was attributed to wolves, wolverines, and other lynx than to coyotes. Direct interactions between coyotes and lynx were rare.


2020年 3月 (北美) SAT 考試閱讀題目

Ivy-Way 學生在上課的過程就會做到2020年3月以及其他的官方歷年考題。除此之外,我們也有讓學生來我們的教室或在家做模考的服務讓學生評估自己的學習進度並看到成績。如果你想預約時間來我們的教室或在家做模考,請聯繫我們!

Also in: 简中 (简中)

Leave a Reply

Your email address will not be published. Required fields are marked *